Algebra 2   (#1200330)

Version for Academic Year:

Course Standards

General Course Information and Notes

Version Description

In Algebra 2, instructional time will emphasize five areas: (1) extending arithmetic operations with algebraic expressions to include radical and rational expressions and polynomial division; (2) graphing and analyzing functions including polynomials, absolute value, radical, rational, exponential and logarithmic; (3) building functions using compositions, inverses and transformations; (4) extending systems of equations and inequalities to include non-linear expressions and (5) developing understanding of the complex number system, including complex numbers as roots of polynomial equations.

All clarifications stated, whether general or specific to Algebra 2, are expectations for instruction of that benchmark

Curricular content for all subjects must integrate critical-thinking, problem-solving, and workforce-literacy skills; communication, reading, and writing skills; mathematics skills; collaboration skills; contextual and applied-learning skills; technology-literacy skills; information and media-literacy skills; and civic-engagement skills.

General Notes

Florida’s Benchmarks for Excellent Student Thinking (B.E.S.T.) Standards
This course includes Florida’s B.E.S.T. ELA Expectations (EE) and Mathematical Thinking and Reasoning Standards (MTRs) for students. Florida educators should intentionally embed these standards within the content and their instruction as applicable. For guidance on the implementation of the EEs and MTRs, please visit https://www.cpalms.org/Standards/BEST_Standards.aspx and select the appropriate B.E.S.T. Standards package.

English Language Development ELD Standards Special Notes Section:

Teachers are required to provide listening, speaking, reading and writing instruction that allows English language learners (ELL) to communicate information, ideas and concepts for academic success in the content area of Mathematics. For the given level of English language proficiency and with visual, graphic, or interactive support, students will interact with grade level words, expressions, sentences and discourse to process or produce language necessary for academic success. The ELD standard should specify a relevant content area concept or topic of study chosen by curriculum developers and teachers which maximizes an ELL’s need for communication and social skills. To access an ELL supporting document which delineates performance definitions and descriptors, please click on the following link: http://www.cpalms.org/uploads/docs/standards/eld/MA.pdf

General Information

Course Number: 1200330
Course Path:
Abbreviated Title: ALG 2
Number of Credits: One (1) credit
Course Length: Year (Y)
Course Attributes:
  • Class Size Core Required
Course Type: Core Academic Course
Course Level: 2
Course Status: State Board Approved
Grade Level(s): 9,10,11,12
Graduation Requirement: Mathematics

Educator Certifications

One of these educator certification options is required to teach this course.

Student Resources

Vetted resources students can use to learn the concepts and skills in this course.

Original Student Tutorial

Happy Halloween! Textual Evidence and Inferences:

Cite text evidence and make inferences in this tutorial that will teach you all about the "real" history of Halloween! 

Type: Original Student Tutorial

Perspectives Video: Professional/Enthusiast

Base 16 Notation in Computing:

Listen in as a computing enthusiast describes how hexadecimal notation is used to express big numbers in just a little space.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Problem-Solving Tasks

Quadrupling Leads to Halving:

Students explore the structure of the operation s/(vn). This question provides students with an opportunity to see expressions as constructed out of a sequence of operations: first taking the square root of n, then dividing the result of that operation into s.

Type: Problem-Solving Task

Radius of a Cylinder:

Students are asked to interpret the effect on the value of an expression given a change in value of one of the variables.

Type: Problem-Solving Task

Mixing Fertilizer:

Students examine and answer questions related to a scenario similar to a "mixture" problem involving two different mixtures of fertilizer. In this example, students determine and then compare expressions that correspond to concentrations of various mixtures. Ultimately, students generalize the problem and verify conclusions using algebraic rather than numerical expressions.

Type: Problem-Solving Task

Mixing Candies:

Students are asked to interpret expressions and equations within the context of the amounts of caramels and truffles in a box of candy.

Type: Problem-Solving Task

Kitchen Floor Tiles:

This problem asks students to consider algebraic expressions calculating the number of floor tiles in given patterns. The purpose of this task is to give students practice in reading, analyzing, and constructing algebraic expressions, attending to the relationship between the form of an expression and the context from which it arises. The context here is intentionally thin; the point is not to provide a practical application to kitchen floors, but to give a framework that imbues the expressions with an external meaning.

Type: Problem-Solving Task

Delivery Trucks:

This resource describes a simple scenario which can be represented by the use of variables. Students are asked to examine several variable expressions, interpret their meaning, and describe what quantities they each represent in the given context.

Type: Problem-Solving Task

Animal Populations:

In this task students interpret the relative size of variable expressions involving two variables in the context of a real world situation. All given expressions can be interpreted as quantities that one might study when looking at two animal populations.

Type: Problem-Solving Task

Computations with Complex Numbers:

This resource involves simplifying algebraic expressions that involve complex numbers and various algebraic operations.

Type: Problem-Solving Task

Seeing Dots:

The purpose of this task is to identify the structure in the two algebraic expressions by interpreting them in terms of a geometric context. Students will have likely seen this type of process before, so the principal source of challenge in this task is to encourage a multitude and variety of approaches, both in terms of the geometric argument and in terms of the algebraic manipulation.

Type: Problem-Solving Task

Tutorials

Multiplying Complex Numbers:

This video demonstrates how to multiply complex numbers using distributive property and FOIL method.

Type: Tutorial

How to Subtract Complex Numbers:

This video will demonstrate how to subtract complex numbers.

Type: Tutorial

Adding Complex Numbers:

This video will demonstrate how to add complex numbers.

Type: Tutorial

Introduction to i and imaginary numbers:

This video gives an introduction to 'i' and imaginary numbers. From this tutorial, students will learn the rules of imaginary numbers.

Type: Tutorial

Video/Audio/Animation

MIT BLOSSOMS - Fabulous Fractals and Difference Equations :

This learning video introduces students to the world of Fractal Geometry through the use of difference equations. As a prerequisite to this lesson, students would need two years of high school algebra (comfort with single variable equations) and motivation to learn basic complex arithmetic. Ms. Zager has included a complete introductory tutorial on complex arithmetic with homework assignments downloadable here. Also downloadable are some supplemental challenge problems. Time required to complete the core lesson is approximately one hour, and materials needed include a blackboard/whiteboard as well as space for students to work in small groups. During the in-class portions of this interactive lesson, students will brainstorm on the outcome of the chaos game and practice calculating trajectories of difference equations.

Type: Video/Audio/Animation

Virtual Manipulative

Fractal Tool:

Students investigate shapes that grow and change using an iterative process. Fractals are characterized by self-similarity, smaller sections that resemble the larger figure. From NCTM's Illuminations.

Type: Virtual Manipulative

Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this course.