M/J STEM Life Science   (#2000025)

Version for Academic Year:

Course Standards

General Course Information and Notes

General Notes

If this course is to be used in a STEM sequence in place of either the comprehensive or subject specific course sequences, teachers should refer to the test item specifications for the 8th grade SSA for information on tested standards which can be found at: https://www.fldoe.org/core/fileparse.php/5663/urlt/swsatisG8.pdf.

This course is an integrated Science, Technology, Engineering and Mathematics (STEM) course for middle school students. M/J STEM Life Science includes an integration of standards from science, mathematics, and english language arts (ELA) through the application to STEM problem solving using life science knowledge and science and engineering practices.  Life science through applications such as biotechnology and biomedical engineering, are emphasized in this course. Laboratory investigations that include the use of scientific inquiry, research, measurement, problem solving, laboratory apparatus and technologies, experimental procedures, and safety procedures are an integral part of this course. The National Science Teachers Association (NSTA) recommends that at the middle school level, all students should have multiple opportunities every week to explore science laboratory investigations (labs). School laboratory investigations are defined by the National Research Council (NRC) as an experience in the laboratory, classroom, or the field that provides students with opportunities to interact directly with natural phenomena or with data collected by others using tools, materials, data collection techniques, and models (NRC, 2006, p. 3). Laboratory investigations in the middle school classroom should help all students develop a growing understanding of the complexity and ambiguity of empirical work, as well as the skills to calibrate and troubleshoot equipment used to make observations. Learners should understand measurement error; and have the skills to aggregate, interpret, and present the resulting data (NRC 2006, p. 77; NSTA, 2007).

Special Notes:

Instructional Practices 
Teaching from a range of complex text is optimized when teachers in all subject areas implement the following strategies on a routine basis:

  1. Ensuring wide reading from complex text that varies in length.
  2. Making close reading and rereading of texts central to lessons.
  3. Emphasizing text-specific complex questions, and cognitively complex tasks, reinforce focus on the text and cultivate independence.
  4. Emphasizing students supporting answers based upon evidence from the text.
  5. Providing extensive research and writing opportunities (claims and evidence).

Science and Engineering Practices (NRC Framework for K-12 Science Education, 2010)

  • Asking questions (for science) and defining problems (for engineering).
  • Developing and using models.
  • Planning and carrying out investigations.
  • Analyzing and interpreting data.
  • Using mathematics, information and computer technology, and computational thinking.
  • Constructing explanations (for science) and designing solutions (for engineering).
  • Engaging in argument from evidence.
  • Obtaining, evaluating, and communicating information.

ISTE Standards (http://www.iste.org/docs/pdfs/20-14_ISTE_Standards-S_PDF.pdf) should be incorporated in many contexts throughout the course.

Engineering Practices are emphasized in the course http://www.nextgenscience.org/sites/ngss/files/Appendix%20F%20%20Science%20and%20Engineering%20Practices%20in%20the%20NGSS%20-%20FINAL%20060513.pdf

Course Standards

NOTE: Use grade appropriate Nature of Science and mathematics content benchmarks (i.e. if this course is offered to seventh grade students, then the SC.7.N benchmarks should be integrated into the course content, and SC.6.N and SC.8.N benchmarks should be omitted from the seventh grade course).

English Language Development ELD Standards
Teachers are required to provide listening, speaking, reading and writing instruction that allows English language learners (ELL) to communicate information, ideas and concepts for academic success in the content area of Science.  For the given level of English language proficiency and with visual, graphic, or interactive support, students will interact with grade level words, expressions, sentences and discourse to process or produce language necessary for academic success The ELD standard should specify a relevant content area concept or topic of study chosen by curriculum developers and teachers which maximizes an ELL’s need for communication and social skills. To access an ELL supporting document which delineates performance definitions and descriptors, please click on the following link: http://www.cpalms.org/uploads/docs/standards/eld/SC.pdf.

Florida’s Benchmarks for Excellent Student Thinking (B.E.S.T.) Standards
This course includes Florida’s B.E.S.T. ELA Expectations (EE) and Mathematical Thinking and Reasoning Standards (MTRs) for students. Florida educators should intentionally embed these standards within the content and their instruction as applicable. For guidance on the implementation of the EEs and MTRs, please visit https://www.cpalms.org/Standards/BEST_Standards.aspx and select the appropriate B.E.S.T. Standards package.

General Information

Course Number: 2000025
Course Path:
Abbreviated Title: M/J STEM LIFE SCI
Course Length: Year (Y)
Course Attributes:
  • Class Size Core Required
Course Type: Core Academic Course
Course Level: 2
Course Status: State Board Approved
Grade Level(s): 6,7,8

Student Resources

Vetted resources students can use to learn the concepts and skills in this course.

Original Student Tutorials

It All Makes Cents! The Two Rs in Science Research: Repetition and Replication :

Learn the importance of replication and repetition in science as you investigate the composition of a penny with this interactive tutorial. 

Type: Original Student Tutorial

Science Innovation: Using Tools in New Ways to Make Discoveries:

Learn how innovation is important in moving scientific thinking forward with this interactive tutorial.

Type: Original Student Tutorial

Scientific Theories Can Change:

Learn about scientific theories and how they can change when new information is presented with this interactive tutorial. 

Type: Original Student Tutorial

Stop! In the Name of Scientific Laws:

Explore how we define and describe scientific phenomena using scientific laws in this interactive tutorial.

Type: Original Student Tutorial

Math Models and Social Distancing:

Learn how math models can show why social distancing during a epidemic or pandemic is important in this interactive tutorial.

Type: Original Student Tutorial

As the Scientific Theory Turns:

Learn about scientific theories and how they can change in this space-themed, interactive tutorial

Type: Original Student Tutorial

Let's Investigate!:

Investigate the benefits and limitations of experiments, observational studies, and comparative studies with this interactive tutorial.

Type: Original Student Tutorial

Science Research: Evidence Through Observation:

Learn about different types of scientific investigations as you discover the Zebra Longwing, a special type of butterfly that calls Florida home. In this interactive tutorial, you'll also learn how scientists collaborate with each other and share empirical evidence. 

Type: Original Student Tutorial

Soccer Science: Why Experiments Need to be Replicable:

Help Ryan revise his soccer science experiment to make it replicable. In this interactive tutorial, you'll learn what "replicable" means and why it's so important in science.


Type: Original Student Tutorial

Think Like a Scientist:

Learn about the tools of science as we look at the mystery of bird migrations in this interactive tutorial. 

Type: Original Student Tutorial

Expedition of the Earth:

Learn how scientific knowledge is open to change and how the knowledge about the Earth's surface has changed in the past 100 years as you complete this interactive tutorial.

Type: Original Student Tutorial

Not Just Another Science Experiment:

Science isn't just about experiments! Learn about other ways to do science such as observational and comparative studies in this interactive tutorial. Science is varied and interesting as we use scientific skills to learn about the world!

Type: Original Student Tutorial

Is It Science or Pseudoscience?:

Learn the differences between science and pseudoscience in this interactive tutorial.

Type: Original Student Tutorial

Using Science to Make Informed Decisions:

Learn how science can help us make informed decisions that improve our lives as you complete this interactive tutorial.

Type: Original Student Tutorial

Science Changes:

Explore the processes of science and how it changes over time. This interactive tutorial uses the historical development of The Cell Theory to illustrate these ideas.

Type: Original Student Tutorial

Science in Action: Engineer:

Engineering and science may be similar but their goals are somewhat different. In this interactive tutorial, learn about engineers; some of the different fields of engineering, where engineers work, what they do, and some of their goals. 

Type: Original Student Tutorial

Science in Action: Geoscientist:

Learn about the work of geo-scientists: What they do, where they work and the types of questions they strive to answer in this interactive tutorial. 

Type: Original Student Tutorial

Science in Action: Physicist:

Learn about the world of physics and explore what physicists do. In this interactive tutorial, you'll discover where they work and what kinds of questions they try to answer. 

Type: Original Student Tutorial

Science in Action: Chemist:

Learn about the work of chemists, various fields of chemistry, where chemists work and the types of questions they strive to answer in this interactive tutorial.

Type: Original Student Tutorial

Science in Action: Biologist:

Learn about the varied job of a biologist; where they work, what they do and the types of questions they try to answer. 

Type: Original Student Tutorial

The Hunt for Exoplanets:

Learn how science relies on creative and innovative thinking as we explore the science of discovering exoplanets in this interactive tutorial. Science is a problem solving endeavor as we try and figure out and learn new things. The answers are hard to find, but if we keep asking questions and building on what we know, then we can solve problems to things we once were thought were impossible!


Type: Original Student Tutorial

Science Research: Developing a Hypothesis:

Learn how to write an effective hypothesis with sharks as a focus in this interactive tutorial. A hypothesis should be testable and falsifiable. 

Type: Original Student Tutorial

Science Is by Everyone and for Everyone:

Learn about the amazing science discoveries by people from all over the world and all walks of life. In this interactive tutorial, you'll see that science is by and for everyone!

Type: Original Student Tutorial

Science Research: Writing a Conclusion:

Learn how to write a valid conclusion from a scientific investigation. In this interactive tutorial, you'll also learn how to answer questions using scientific reasoning. 

Type: Original Student Tutorial

Energy and Cellular Respiration:

Learn how food is broken down to produce energy for cells in the in the form of ATP in this interactive tutorial. 

Type: Original Student Tutorial

Scientist's Next Top Model:

Come with me as we select Scientist's Next Top Model! When does an abstract idea become a real scientific model? When the model appears in scientific journals and textbooks all over the world. Before a model can grace the cover of these high profile, peer reviewed journals and textbooks it must go through a rigorous process. How does a model go from an idea to a scientific model? What took me 2000 years I am going to make happen for one lucky model in just 15 short minutes!

Competition is tough and each model will have to showcase why they are able to represent themselves as Scientist’s Next Top Model.

Type: Original Student Tutorial

Population Variation: Phenotype (Part 1 of 2):

Learn how evolution is influenced by genetic variation, natural selection, and allele frequency in this interactive tutorial.

This is part 1 in a two-part series. After you finish this tutorial, check out Population Variation: Genotype (Part 2).

Type: Original Student Tutorial

Population Variation: Genotype (Part 2 of 2):

Examine how evolution is influenced by genetic variation, natural selection, and allele frequency through the lens of organism genotype. 

Click below to open part 1.

Type: Original Student Tutorial

Repetition and Replication:

Learn to differentiate replication (by others) from repetition (multiple trials) in experimental design through the information and practice exercises in this interactive tutorial.

Type: Original Student Tutorial

Solving the Puzzle: Where Do Living Things Come From?:

Explore how scientists have used scientific thinking and methods to develop hypotheses about the development of life on Earth. Throughout this interactive tutorial, you'll see how learning through science requires retesting data, reconsidering evidence, and debate between scientists.

Type: Original Student Tutorial


Explore heredity--how genetic information in DNA is passed from parents to offspring. In this interactive tutorial, you see how inherited genetic information impacts traits in offspring. 

Type: Original Student Tutorial

Models in Science:

Learn to identify models and their use in science with this interactive tutorial.

Type: Original Student Tutorial

Identification of Variables:

Learn to identify the independent variable and the dependent variable in an experiment with this interactive tutorial.

Type: Original Student Tutorial

Scientific Laws:

Learn to identify the importance of scientific laws and how they are different from societal laws.

Type: Original Student Tutorial

Scientific Knowledge Changes:

Learn how scientific knowledge can change when new evidence is discovered or new ideas are developed. In this interactive tutorial, you'll look at some famous example from the history of science, including the cell theory and the theory of plate tectonics.

Type: Original Student Tutorial

Fossils: Evidence of Evolution :

Learn how to recognize that fossil evidence is consistent with the scientific theory of evolution, that living things evolved from earlier species by natural selection, with this interactive tutorial.

Type: Original Student Tutorial

Knights of the Round and Round Table-The Carbon Cycle:

Follow our quest to learn how the element carbon is cycled on Earth with this interactive tutorial.

Type: Original Student Tutorial

Conservation of Mass and Energy in Living Systems:

Learn how to identify explicit evidence and understand implicit meaning in a text. You should be able to describe how matter and energy are continuously transferred within and between organisms and their physical environment; and cite evidence that living systems follow the Laws of Conservation of Mass and Energy.

Type: Original Student Tutorial

Do or Die: Extinction in a Changing World:

Learn how the environment on Earth is constantly changing and that populations of organisms adapt to this change by evolving via natural selection. In this interactive tutorial, you'll discover how organisms do and do not avoid extinction.

Type: Original Student Tutorial

The Main Event: Scientific Theories vs. Scientific Laws:

Learn to recognize and explain the difference between scientific theories and scientific laws in this interactive tutorial. You'll also explore several examples of scientific theories and the evidence that supports them.

Type: Original Student Tutorial

From Flowers To Freckles: Mendel's Mighty Model:

Learn how scientists use models to simplify and understand the world around us. In this interactive tutorial, you'll also explore the benefits and limitations of scientific models.

Type: Original Student Tutorial

Educational Game

Stop Disasters Before They Happen:

Students attempt to save towns from damage prior to the arrival of several different natural disasters. Students will learn the importance of early prevention and actions to protect others, themselves and their property when faced with a natural disaster. Certain disasters are more appropriate for particular grade levels. Each scenario takes between 20 and 45 minutes to play, depending on the disaster for which your students are trying to prepare. There are five scenarios available, hurricane, tsunami, flood, earthquake, and wildfire. Each scenario can be played on easy, medium or hard difficulty levels. As with life, there are no "perfect solutions" to each scenario and no "perfect score", so students can play multiple times and the scenarios will still be slightly different.These simulation are part of a larger website that provides multiple links for natural disasters.

Type: Educational Game


Common Water Measurements USGS:

This site uses text and images to describe methods that the U.S. Geological Survey measures water temperature, pH, specific conductance, turbidity, dissolved oxygen, hardness, and suspended sediment.

Type: Image/Photograph

Perspectives Video: Expert

Large-scale Environmental Modeling:

Some scientists' labs are outside! Learn all about a large-scale environmental model called LILA!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert


A Walk Through Time:

This interactive tutorial explores the evolution of time measurement through the ages, beginning with Stonehenge and ancient calendar systems. It progresses through sun and water clocks, mechanical and quartz-movement clocks, and atomic clocks.

Type: Presentation/Slideshow

What is Science?:

Resource provides a succinct overview of the nature of science; what science is and is not. Information includes the aims of scientific pursuits, principles, process and thinking.

Type: Presentation/Slideshow

Text Resources

Concept 41: "Genes Come in Pairs":

This resource comes from the Cold Springs Harbor Laboratory: DNA from the Beginning online module series. There are 41 modules located on this site all focused on DNA and organized by individual concepts. The science behind each concept is explained in each module by: animations, an image gallery, video interviews, problems, biographies, and additional links. This is the 2nd module in the series, and it is focused on how genes come in pairs.

Type: Text Resource

Why Isn't Pluto A Planet?:

This Frequently Asked Question page can be used by educators and students as a scientific resource to answer the question, "Why isn't Pluto a planet?". From the International Astronomical Union, the definitive answer from the governing body that classified Pluto as a dwarf planet.

Type: Text Resource


Will an Ice Cube Melt Faster in Freshwater or Saltwater?:

With an often unexpected outcome from a simple experiment, students can discover the factors that cause and influence thermohaline circulation in our oceans. In two 45-minute class periods, students complete activities where they observe the melting of ice cubes in saltwater and freshwater, using basic materials: clear plastic cups, ice cubes, water, salt, food coloring, and thermometers. There are no prerequisites for this lesson but it is helpful if students are familiar with the concepts of density and buoyancy as well as the salinity of seawater. It is also helpful if students understand that dissolving salt in water will lower the freezing point of water. There are additional follow up investigations that help students appreciate and understand the importance of the ocean's influence on Earth's climate.

Type: Video/Audio/Animation

Inquiry and Ocean Exploration:

Ocean explorer Robert Ballard gives a TED Talk relating to the mysteries of the ocean, and the importance of its continued exploration.

Type: Video/Audio/Animation

Supermodels of Science:

This game aims at showing the use of model organisms in behavioral studies and in detecting the causes of certain diseases

Type: Video/Audio/Animation

Science Crossword Puzzles:

A collection of crossword puzzles that test the knowledge of students about some of the terms, processes, and classifications covered in science topics

Type: Video/Audio/Animation

Introduction to Basic Genetics Terminology:

This website allows students and/or teachers to refresh their memory on terms such as DNA, traits, heredity, and genetics.

Type: Video/Audio/Animation

Autism Genes:

This 13-minute video segment produced by NOVA Science Now explores the work by one committed family and researchers to identify patterns in the genetic information of autism patients.

Type: Video/Audio/Animation


This 2-1/2 minute video segment from Interactive NOVA: "Earth" explores the history of plant biology. The video takes the viewer from the earliest scientific hypotheses that plants "eat" dirt, to our present-day understanding of photosynthesis, the process by which plants use the sun's energy to convert carbon dioxide and water into carbohydrates, a storable form of chemical energy.

Type: Video/Audio/Animation

Virtual Manipulatives

Natural Selection:

Students will explore natural selection by controlling the environment and causing mutations in bunnies. This will demonstrate how natural selection works in nature. They will have the opportunity to throw in different variables to see what will make their species of rabbit survive.

Type: Virtual Manipulative

Telescopes from the Ground Up:

In this interactive site, navigate through the fascinating history and science of telescopes. Learn about Galileo, Newton, refractors, reflectors, lenses, light, and telescope engineering and technology.

Type: Virtual Manipulative

Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this course.