Biotechnology 2   (#3027020)

Version for Academic Year:

Course Standards

General Course Information and Notes

Version Description

The most current curriculum framework and other instructional and planning resources for this course are available on the Florida Department of Education website at:http://www.fldoe.org/academics/career-adult-edu/career-tech-edu/curriculum-frameworks/2020-21-frameworks/manufacturing.stml

General Notes

Credits: 0.5 Science/0.5 CTE

Notes:
Laboratory investigations which include the use of scientific inquiry, research, measurement, problem solving, laboratory apparatus and technologies, experimental procedures, and safety procedures are an integral part of this course.

 

Special Notes: 
Instructional Practices
 
Teaching from a range of complex text is optimized when teachers in all subject areas implement the following strategies on a routine basis: 

  1. Ensuring wide reading from complex text that varies in length.
  2. Making close reading and rereading of texts central to lessons.
  3. Emphasizing text-specific complex questions, and cognitively complex tasks, reinforce focus on the text and cultivate independence.
  4. Emphasizing students supporting answers based upon evidence from the text.
  5. Providing extensive research and writing opportunities (claims and evidence).


Science and Engineering Practices
 (NRC Framework for K-12 Science Education, 2010)

  • Asking questions (for science) and defining problems (for engineering).
  • Developing and using models.
  • Planning and carrying out investigations.
  • Analyzing and interpreting data.
  • Using mathematics, information and computer technology, and computational thinking.
  • Constructing explanations (for science) and designing solutions (for engineering).
  • Engaging in argument from evidence.
  • Obtaining, evaluating, and communicating information.

 


English Language Development ELD Standards Special Notes Section:
Teachers are required to provide listening, speaking, reading and writing instruction that allows English language learners (ELL) to communicate information, ideas and concepts for academic success in the content area of Science. For the given level of English language proficiency and with visual, graphic, or interactive support, students will interact with grade level words, expressions, sentences and discourse to process or produce language necessary for academic success The ELD standard should specify a relevant content area concept or topic of study chosen by curriculum developers and teachers which maximizes an ELL's need for communication and social skills. To access an ELL supporting document which delineates performance definitions and descriptors, please click on the following link: https://cpalmsmediaprod.blob.core.windows.net/uploads/docs/standards/eld/sc.pdf

Qualifications

As well as any certification requirements listed on the course description, the following qualifications may also be acceptable for the course:

Biology Grades 6-12 Certification AND Biotechnology District-issued Employment Certificate

OR

Chemistry Grades 6-12 Certification AND Biotechnology District-issued Employment Certificate

General Information

Course Number: 3027020
Course Path:
Abbreviated Title: BIOTECH 2
Course Length: Year (Y)
Course Type: Core Academic Course
Course Level: 3
Course Status: Draft - Course Pending Approval
Grade Level(s): 9,10,11,12

Educator Certifications

One of these educator certification options is required to teach this course.

Student Resources

Vetted resources students can use to learn the concepts and skills in this course.

Original Student Tutorials

Turtles and Towns:

Explore the impacts on sea turtles, humans, and the economy when we live, work, and play at the beach with this interactive tutorial.

Type: Original Student Tutorial

Major Parts of the Human Brain Part 3: The Cerebrum, Cerebellum, and Meninges:

Explore the cerebrum and the cerebellum--the seats of thoughts and emotions in the human brain. You'll also learn about their functions and how they are surrounded and protected by the meninges..

This interactive tutorial is part 3 in a three-part series about the human brain. Click below to open other tutorials in this series.

Type: Original Student Tutorial

Major Parts of the Human Brain Part 2: The Hypothalamus and Thalamus:

Explore the hypothalamus and the thalamus, two regions in the center of the human brain that are among the areas responsible for constantly controlling mechanisms that we are hardly aware of, such as keeping our body temperature stable. 

This interactive tutorial is part 2 in a three-part series about the human brain. Click below to continue this series.

Type: Original Student Tutorial

Major Parts of the Human Brain Part 1: The Brainstem:

Learn about the three components that make up the brainstem of the human brain, including their specific functions and how the brainstem relates to the brain and the rest of the body.

This interactive tutorial is part 1 in a three-part series about the human brain. Click below to continue this series.

Type: Original Student Tutorial

How Viral Disease Spreads:

Learn how scientists measure viral spread and use this information to make recommendations for the public in this interactive tutorial.

Type: Original Student Tutorial

Evaluating Sources of Information:

Learn how to identify different sources of scientific claims and to evaluate their reliability in this interactive tutorial.

Type: Original Student Tutorial

Testing Scientific Claims:

Learn how to test scientific claims and judge competing hypotheses by understanding how they can be tested against one another in this interactive tutorial.

Type: Original Student Tutorial

Genes and Health:

Genetic mutations can cause illness. Learn how genetic diseases can affect you and your communities in this interactive tutorial.

Type: Original Student Tutorial

Hidden Mutations:

Dive into genetic mutations and learn how they can alter the phenotypes of organisms.

Type: Original Student Tutorial

When the Immune System Isn't Enough:

Explores how vaccines and antibiotics provide an extra level of protection from infectious agents and pathogens. 

Type: Original Student Tutorial

Genes and Environment:

Learn how the expression of genes is affected our environment, including lifestyle choices. In this interactive tutorial, you'll also explore how a combination of genes and environmental factors can impact the risk of multifactorial disease.

Type: Original Student Tutorial

Biodiversity and Non-native Species:

See how non-native species can impact ecosystem biodiversity to create problems for native species in this interactive tutorial.

Type: Original Student Tutorial

Expository Writing: Eyes in the Sky (Part 4 of 4):

Practice writing different aspects of an expository essay about scientists using drones to research glaciers in Peru. This interactive tutorial is part four of a four-part series. In this final tutorial, you will learn about the elements of a body paragraph. You will also create a body paragraph with supporting evidence. Finally, you will learn about the elements of a conclusion and practice creating a “gift.” 

This tutorial is part four of a four-part series. Click below to open the other tutorials in this series.

Type: Original Student Tutorial

Conditions for Natural Selection:

Explore three conditions required for natural selection and see how these conditions lead to allele frequency shifts in a population. 

Type: Original Student Tutorial

Phosphorus in the Everglades:

Learn how phosphorus pollution can lead to changes in the Everglades. 

Type: Original Student Tutorial

Expository Writing: Eyes in the Sky (Part 3 of 4):

Learn how to write an introduction for an expository essay in this interactive tutorial. This tutorial is the third part of a four-part series. In previous tutorials in this series, students analyzed an informational text and video about scientists using drones to explore glaciers in Peru. Students also determined the central idea and important details of the text and wrote an effective summary. In part three, you'll learn how to write an introduction for an expository essay about the scientists' research. 

This tutorial is part three of a four-part series. Click below to open the other tutorials in this series.

Type: Original Student Tutorial

Drones and Glaciers: Eyes in the Sky (Part 2 of 4):

Learn how to identify the central idea and important details of a text, as well as how to write an effective summary in this interactive tutorial. This tutorial is the second tutorial in a four-part series that examines how scientists are using drones to explore glaciers in Peru. 

This tutorial is part two of a four-part series. Click below to open the other tutorials in this series.

Type: Original Student Tutorial

The Human Reproductive System, Part 1:

Explore the genetic advantage of sexual reproduction, describe the basic anatomy and physiology of both the male and female human reproductive systems, describe the process of human development leading up to birth, and identify major changes associated with each trimester of pregnancy.

This interactive tutorial is part 1 in a two-part series. Click here to 

Type: Original Student Tutorial

The Human Reproductive System (Part 2):

Explore the process of human development leading up to birth, and identify major changes associated with each trimester of pregnancy.

This interactive tutorial is part 2 in a two-part series. Click here to launch .

Type: Original Student Tutorial

Drones and Glaciers: Eyes in the Sky (Part 1 of 4):

Learn about how researchers are using drones, also called unmanned aerial vehicles or UAVs, to study glaciers in Peru. In this interactive tutorial, you will practice citing text evidence when answering questions about a text.

This tutorial is part one of a four-part series. Click below to open the other tutorials in this series.

Type: Original Student Tutorial

Pathogens and Disease:

Pathogens of all sorts can make us sick. Learn the whats, whys, and hows of the process in this interactive tutorial.

Type: Original Student Tutorial

Migration in the Kenyan Savannah:

Examine migration and factors affecting both population sizes and distributions of key species in the Kenyan savannah with this interactive tutorial. 

Type: Original Student Tutorial

Untangling Food Webs:

Learn how living organisms can be organized into food webs and how energy is transferred through a food web from producers to consumers to decomposers. This interactive tutorial also includes interactive knowledge checks.

Type: Original Student Tutorial

Assessment of Genetic Biodiversity through Biotechnology:

Examine how genetic identification is aiding marine biologists studying organisms in deep ocean regions. This interactive tutorial also features a CPALMS Perspectives video.

Type: Original Student Tutorial

The Macromolecules of Life: Carbohydrates:

Learn about the basic molecular structures and primary functions of carbohydrates with this interactive tutorial.

This is part 2 in a five-part series. Click below to explore other tutorials in the series.

Type: Original Student Tutorial

Methylmercury in the Everglades:

Explore the impact of methylmercury pollution in the Everglades wetland ecosystem.

Type: Original Student Tutorial

Challenges to Public Health :

Learn to distinguish between public health issues and individual health issues in this interactive tutorial. 

This is part 1 of 4 in a series of tutorials addressing this standard.

Type: Original Student Tutorial

Periphyton in the Everglades:

Explore species interdependence focusing on roles played by periphyton in the Everglades ecosystem with this interactive tutorial.

Type: Original Student Tutorial

Microscope Mathematics:

Learn how you can use a microscope as a tool to measure objects in this interactive tutorial.

Type: Original Student Tutorial

Ecological Data Analysis:

See how data are interpreted to better understand the reproductive strategies taken by sea anemones with this interactive tutorial.

Type: Original Student Tutorial

Beyond Natural Selection: Mechanisms of Evolution:

Explore mechanisms of evolutionary change other than natural selection such as mutation, gene flow, and genetic drift in this interactive tutorial.

Type: Original Student Tutorial

Ecology Sampling Strategies:

Examine field sampling strategies used to gather data and avoid bias in ecology research. This interactive tutorial features the CPALMS Perspectives video .

Type: Original Student Tutorial

Macromolecules: Lipids:

Learn about the basic molecular structures and primary functions of lipids with this interactive tutorial.

This is part 3 in a five-part series. Click below to explore other tutorials in the series.

Type: Original Student Tutorial

A Study in Sustainability:

Learn how individual and societal choices affect sustainability and explore ways that you can reduce your impact on the environment with this interactive tutorial.

Type: Original Student Tutorial

DNA to Genes to Proteins:

Learn about the first step of protein synthesis, transcription of DNA to RNA. In this interactive tutorial, you'll explore epigenetics as a mechanism to activate or inactivate gene expression.

Type: Original Student Tutorial

Enzymes are the Stuff of Life:

At any instant in your life, millions and millions of enzymes are hard at work in your body as well as all around you making your life easier!

By the end of this tutorial you should be able to describe how enzymes speed up most biochemical reactions as well as identify the various factors that affect enzyme activity like pH and temperature.

Type: Original Student Tutorial

Sustainability:

Learn the definition of "sustainability" and understand how our throw away consumer lifestyle has affected the environment in a negative way. In this interactive tutorial, you'll explore possible solutions to prevent further harm to the environment.

Type: Original Student Tutorial

Cells, Cells Everywhere!:

Learn how to identify explicit evidence and understand implicit meaning in the basic principles of the cell theory. The cell theory states that all organisms are made of cells. These cells are the smallest and basic unit of life. And finally, cells can only come from other cells.

Type: Original Student Tutorial

Cell Types:

Learn how to classify cells as prokaryotic or eukaryotic and distinguish eukaryotic cells as plant or animal with this interactive tutorial.

Type: Original Student Tutorial

Protein Synthesis: Your Personal Protein Factory:

Explore the basic processes of transcription and translation, and how they result in the expression of genes as you complete this interactive tutorial.

Type: Original Student Tutorial

Natural Selection:

Describe the conditions required for natural selection and tell how it can result in changes in species over time. In this interactive tutorial, follow Charles Darwin through a life of exploration, observation, and experimentation to see how he developed his ideas.

Type: Original Student Tutorial

The Macromolecules of Life: Proteins:

Learn about the basic molecular structures and primary functions of proteins with this interactive tutorial.

This is part 4 in a five-part series. Click below to explore other tutorials in the series.

Type: Original Student Tutorial

Evolution: Examining the Evidence:

Learn how to identify explicit evidence and understand implicit meaning in a text.

You should be able to explain how different types of scientific evidence support the theory of evolution, including direct observation, fossils, DNA, biogeography, and comparative anatomy and embryology.

Type: Original Student Tutorial

Energy and Matter Movement through Biogeochemical Cycles:

Learn how to trace matter and energy through living and non-living systems and understand that matter and energy are transferred on a global scale.

Type: Original Student Tutorial

Changing with the Times: Variation within Ecosystems:

Explore how environmental changes at different time scales affect living organisms within ecosystems in this interactive tutorial.

Type: Original Student Tutorial

What Makes Your Blood Flow?:

Learn about factors that affect the blood flow in your body in this interactive tutorial.

Type: Original Student Tutorial

DNA Replication:

Learn how DNA is copied and explain how this process allows cells to have identical genetic information with this interactive tutorial.

Type: Original Student Tutorial

Cellular Transport: The Role of the Cell Membrane:

Learn about the function of the cell membrane as a selective barrier that moves material into and out of the cell to maintain homeostasis with this interactive tutorial.

Type: Original Student Tutorial

The Macromolecules of Life: Nucleic Acids:

Learn to identify and describe the structural and functional features of nucleic acids, one of the 4 primary macromolecule groups in biological systems, with this interactive tutorial.

This is Part 3 in 5-part series. Click below to open the other tutorials in the series:

Type: Original Student Tutorial

Observation vs. Inference:

Learn how to identify explicit evidence and understand implicit meaning in a text and demonstrate how and why scientific inferences are drawn from scientific observation and be able to identify examples in biology.

Type: Original Student Tutorial

Population Interactions:

Explore population interactions and how those interactions can affect population size in this interactive tutorial. You'll also learn about competition, predation and symbiosis.

Type: Original Student Tutorial

Types of Microscopes:

Learn how to determine differences and similarities of the structure and function of compound light microscopes, dissecting microscopes, scanning electron microscopes and transmitting electron microscopes.

Type: Original Student Tutorial

The Macromolecules of Life: Overview:

Learn to identify the four basic biological macromolecules (carbohydrates, lipids, proteins, and nucleic acids) by structure and function with this interactive tutorial.

This is part 1 in a five-part series. Click below to explore other tutorials in the series.

Type: Original Student Tutorial

Plant Organs:

Learn about the structure, function, and evolutionary origins of plant tissues and organs with this interactive tutorial.

Type: Original Student Tutorial

Diving the Depths of Underwater Life:

Learn how the distribution of aquatic life forms is affected by light, temperature, and salinity with this interactive tutorial.

Type: Original Student Tutorial

Impact of Biotechnology:

Learn how to identify and define types of biotechnology and consider the impacts of biotechnologies on the individual, society and the environment in this interactive tutorial.

Type: Original Student Tutorial

Climbing Around the Hominin Family Tree:

Learn to identify basic trends in the evolutionary history of humans, including walking upright, brain size, jaw size, and tool use in "Climbing Around the Hominin Family Tree" online tutorial.

Type: Original Student Tutorial

Energy and Carbon in Photosynthesis and Cellular Respiration:

Learn more about photosynthesis and cellular respiration. In this interactive tutorial, you will gain awareness of the connections between these two very important processes with regard to energy and carbon.

Type: Original Student Tutorial

The Immune System: Your Body’s Private Defense System:

Learn how to identify the basic functions of the immune system. You will also be able to distinguish between nonspecific and specific immune responses.

Type: Original Student Tutorial

Brain Basics:

Learn how to name the major regions of the brain and identify them on a diagram with this interactive tutorial.

Type: Original Student Tutorial

Chemistry With a Conscience:

Explore green chemistry and what it means to be benign by design in this interactive tutorial.

Type: Original Student Tutorial

Educational Games

EvoDots - Software for Evolutionary Analysis:

The software application, which allows the students to simulate natural selection in a population of dots, goes along with a tutorial which is also at this site.

Type: Educational Game

Stop Disasters Before They Happen:

Students attempt to save towns from damage prior to the arrival of several different natural disasters. Students will learn the importance of early prevention and actions to protect others, themselves and their property when faced with a natural disaster. Certain disasters are more appropriate for particular grade levels. Each scenario takes between 20 and 45 minutes to play, depending on the disaster for which your students are trying to prepare. There are five scenarios available, hurricane, tsunami, flood, earthquake, and wildfire. Each scenario can be played on easy, medium or hard difficulty levels. As with life, there are no "perfect solutions" to each scenario and no "perfect score", so students can play multiple times and the scenarios will still be slightly different.These simulation are part of a larger website that provides multiple links for natural disasters.

Type: Educational Game

Transcribe and Translate a Gene:

See how cells "read" the information in a DNA sequence to build a protein, then build one yourself!

Type: Educational Game

Cell Structure Crossword Puzzle:

This cell structure crossword puzzle uses vocabulary from CELLS alive! If you have trouble and need a hint, use the "Search this Site" engine in the lefthand menu. Good Luck!

Type: Educational Game

Lesson Plans

The Surprising World of Complex Systems:

This lesson introduces students to complex systems and to basic concepts from the field of system dynamics that lie at the heart of systems thinking. These concepts include stocks and flows, feedback loops, unintended consequences, and the basic principle that the behavior of complex systems can best be understood by looking at the system as a whole, and specifically by analyzing the system’s underlying structure. The lesson introduces these topics through an immersion in (and a role-play simulation of) the dynamics of urban recycling systems, many of which have been thrown into crisis in the past two years. Through this current-affairs example of complex systems in crisis, we identify some key structural features that help to explain how these systems behave over time. We also discover how well-intentioned action can cause negative unintended consequences when we try to intervene in a complex system without understanding how it operates.

Type: Lesson Plan

Sea Level Rise: The Ocean's Uplifting Experience:

The purpose of this lesson is to introduce students to the concept of sea level rise as it occurs through climate change by having them examine 3 specific parameters:  ice distribution, thermal expansion, and analyzing and interpreting data.  The lesson and activities within the lesson were designed using the three dimensions of the Framework for K-12 Science Education and the Next Generation Science Standards – specifically crosscutting concepts, science and engineering practices, and disciplinary core ideas. While there isn’t any required pre-requisite learning required for this lesson, a general understanding of sea-level rise, glaciers, and climate may be beneficial to students. During classroom breaks, pairs of students will develop/discuss their models, revise their interpretations of their models or data, and think-pair-share their thoughts on the investigation segments.

Type: Lesson Plan

CO2: Find Out What It Means to You:

This BLOSSOMS lesson discusses Carbon Dioxide, and its impact on climate change. The main learning objective is for students to become more familiar with human production of Carbon Dioxide gas, as well as to gain an awareness of the potential for this gas to effect the temperature of Earth’s atmosphere. This lesson should take about an hour to complete. In order to complete the lesson, the teacher will need: printed copies of signs representing the different products and processes that take place in the carbon cycle (included), samples of matter that represent those products, handouts for the students to create a graphic of the carbon cycle (included) and graph paper or graphing software for students to create graphs. In the breaks of this BLOSSOMS lesson, students will be creating models of the carbon cycle as well as observing experiments and analyzing data from them. It is hoped that this lesson will familiarize students with ways in which carbon moves through our environment and provide them with some personal connection to the impact that an increased concentration of CO2 can have on air temperature. The goal is to spark their interest and hopefully to encourage them to ask and investigate more questions about the climate. 

Type: Lesson Plan

Meet the Family: Investigating Primate Relationships:

In this lesson students will see the different types of evidence scientists use to understand evolutionary relationships among organisms. They will first practice by using shared physical characteristics to predict relationships among members of the cat family and then use this approach to predict primate relationships. They will compare their predictions to evidence provided by analyzing amino acid sequences and build a phylogenetic tree based on these sequences. Finally, they will look at the tree in the context of time in order to see divergence times.

Type: Lesson Plan

Using DNA to Identify People:

 Learning objectives:  Students will learn what DNA fingerprinting is, what it is used for, and how it is used in paternity testing and forensics.  Students will see how this technique actually works in lab.  Students will learn how to analyze the gels used in this technique to match babies to parents, and crime scene evidence to suspects.

Type: Lesson Plan

Perspectives Video: Experts

Mathematically Exploring the Wakulla Caves:

The tide is high! How can we statistically prove there is a relationship between the tides on the Gulf Coast and in a fresh water spring 20 miles from each other?

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

MicroGravity Sensors & Statistics:

Statistical analysis played an essential role in using microgravity sensors to determine location of caves in Wakulla County.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Proteins and Secretory Pathways:

A cell has made a protein; now what? Learn more about protein secretion!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Biochemistry and Medicine:

Advances in "big data" are leading to rapid developments in personalized medicine. Learn more!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Prokaryotic vs. Eukaryotic Gene Expression:

Check this out and learn about how prokaryotes and eukaryotes regulate gene expression.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Transcription and Translation:

How do you know what genes are thinking? By their expression. Learn more from a plant geneticist.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Measuring Biodiversity to Evaluate Human Impact:

Humans impact the environment in a number of ways. Learn more about how we interact with nature!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Coral Varieties and their Place in Aquatic Systems:

Learn all the information about coral and corral that knowledge!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Protein Factories:

What's in a molecular biologist's toolbox? Very small tools for working with cellular machines and molecules!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Ocean Currents and Aquatic Life:

Too many ideas about ocean currents swirling around in your head? Get into the flow of things with this video.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Physical Adaptation to Low Light Aquatic Environments:

This biologist will brighten your day with a discussion on colorful (or not) ways that marine organisms have adapted to ocean lighting.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Oil Spills and Biodiversity:

Do you think you know oil there is to know about human impact on the environment? Let this biologist explain.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Physical Environment and Natural Selection:

This video is a natural selection for learning about evolution.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Methods of Evolution in Animal Populations Big and Small:

Interested in how evolution happens? Drift into this video and go with the flow.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Oil Fingerprinting:

Humans aren't the only ones who get their fingerprints taken. Learn how this scientist is like a crime scene investigator using oil "fingerprints" to explain the orgins of spilled oil.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

How do Fish Stay in their Zone?:

Sink into science as a biologist floats a few thoughts about physiological adaptations marine animals use to stay at the right depth.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Dissolved Oxygen in Aquatic Ecosystems:

Dissolved oxygen is important to all life in and out of the water! Learn more in this video!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Protect our Fisheries from Invasive Species:

Lionfish and other species are roaring past our native populations. Learn more.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Sea Turtle Conservation:

Watch as this scientist shines a light on a type of pollution that affects sea turtles.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Negative Impacts of Oil Spills:

Learn how the Woods Hole Oceanographic Institution experts track oil-soaked sand patties on the Gulf Coast to monitor possible negative environmental impacts from the Deepwater Horizon oil spill.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Viticulture and Biotechnology:

A viticulture scientist explains grape expectations for medicine and society.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Perspectives Video: Professional/Enthusiasts

Ethanol Fuel:

Why can't you put Ethanol fuel in a boat motor?

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Interaction of the Spheres:

Jeff Dutrow discusses how the interactions of spheres impacts fish behaviors including tides, currents, and seasons.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Estimating Oil Seep Production by Bubble Volume:

<p>You'll need to bring your computer skills and math knowledge to estimate oil volume and rate as it seeps from the ocean floor. Dive in!</p>

Type: Perspectives Video: Professional/Enthusiast

Managing Waste Disposal with Landfills and Recycling:

Landfills have a come a long way! Explore modern techniques for managing our environmental impact through responsible waste disposal.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Presentation/Slideshows

Cell Processes and Energy: Photosynthesis and Respirataion:

This presentation, a narrated PowerPoint, provides detailed information regarding photosynthesis and cellular respiration. It is provided by a teacher for his students, but is well-done and engaging enough to be useful for other students.

Type: Presentation/Slideshow

What Killed the Dinosaurs?:

It is often difficult, sometimes impossible, to get a definitive answer to some of life's most enduring questions. Scientific processes provide alternative explanations for a wide variety of phenomena by piecing together all the available information. This interactive activity on the Evolution website explores four possible hypotheses to explain what caused the extinction of the dinosaurs 65 million years ago, inviting the viewer to consider the evidence and come to their own decision.

Type: Presentation/Slideshow

Introduction to Infectious Diseases:

A PowerPoint with speaker notes covering infectious diseases, causes, transmission, and control.

Type: Presentation/Slideshow

Text Resources

Carbon Cycle- Ocean Acidification:

This website contains units focused on Earth's systems and cycles, which illustrate a sequence for learning the concepts through reading, data analysis activities, satellite imagery, computer visualizations, and hands-on experiments. This unit focuses on the ocean carbon cycle.

Type: Text Resource

Risks of Genetic Engineering:

An online passage which addresses the Health and Environmental risks of genetic engineering.

Type: Text Resource

What you Need to Know about Energy:

This site from the National Academy of Sciences presents uses, sources, costs, and efficiency of energy.

Type: Text Resource

Tutorials

Risk Factors for Stroke:

In this Khan Academy video you will learn some of the modifiable and non-modifiable risk factors that can lead to a stroke.

Type: Tutorial

Cerebral Blood Supply: Part 2:

In this Khan Academy tutorial video, learn about the arteries that serve your brain. This is a continuation from Cerebral Blood Supply: Part 1.

Type: Tutorial

Cerebral Blood Supply: Part 1:

In this Khan Academy video tutorial, learn the main important arteries in the brain that bring necessary oxygen to all parts of the brain.

Type: Tutorial

What is a Stroke?:

Learn the conditions present in your brain that cause a stroke.

Type: Tutorial

Complications After a Heart Attack (Myocardial Infarction):

Learn about the complications that may occur after a heart attack (myocardial infarction).

Type: Tutorial

Treatment of Stroke with Interventions:

In this Khan academy video tutorial, learn about the possible treatments and interventions of different types of strokes.

Type: Tutorial

Post Stroke Inflammation:

Learn about post-stroke inflammation.

Type: Tutorial

Healing after a Heart Attack (Myocardial Infarction):

Learn about the process your body goes through in healing after a heart attack (myocardial infarction).

Type: Tutorial

Vaccine and Active Immunity:


A vaccine allows a person to develop acquired immunity against an illness without actually getting the disease. This interactive tutorial will help the learners to understand the process by which vaccines work in the human body.

Type: Tutorial

Chromosomes, Chromatids, and Chromatin:

This Khan Academy video reviews the basic processes of DNA replication and protein synthesis. It then goes on to explain how the terms chromosome, chromatin, and chromatid, relate to each other.

Type: Tutorial

Embryonic Stem Cells:

This Khan Academy video describes what happens to a zygote as it becomes an embyro. It further explains what a stem cell is and discusses why there are questions concerning the use of stem cells.

Type: Tutorial

Cytotoxic T Cells:

This Khan Academy video explains how cytotoxic t cells get activated by MHC-I antigen complexes and then proceed to kill infected cells. This video addresses the concept at a high level of complexity.

Type: Tutorial

Helper T Cells:

This Khan Academy video discusses helper t cells in the immune system. The role of helper t cells in activating b cells is detailed. This challenging tutorial addresses the concept at a high level of complexity.

Type: Tutorial

Transcription and Translation:

This Khan Academy video briefly describes DNA replication and then goes into a thorough explanation of both transcription and translation.

Type: Tutorial

DNA:

This Khan Academy video describes the structure of the molecule DNA in great detail. It also discuses the role DNA plays in the process of protein synthesis, explaining transcription and translation. The video discusses the relationship between DNA and chromosomes as well.

Type: Tutorial

B Lymphocytes:

This Khan Academy video describes B lymphocyte cells, and how they are activated and produce antibodies within the immune system.

Type: Tutorial

Role of Phagocytosis in Nonspecific Immunity:

This Khan Academy video describes non specific immunity, and the specific role of phagocytes. The tutorial explains how phagocytes engulf pathogens that enter the body as a line of defense.

Type: Tutorial

Types of Immune Responses:

This Khan Academy video contains an overview of the types of immune responses in the body. The differences between humoral adaptive immunity and cell mediated immunity are discussed in detail.

Type: Tutorial

Natural Selection and the Owl Butterfly:

This Khan Academy tutorial explains how the owl butterfly might have evolved the spots on its wings through natural selection.

Type: Tutorial

DNA Sequencing Using the Sanger Method:

DNA sequencing is a technique for determining the complete sequence of bases (As, Ts, Gs, and Cs) for a particular piece of DNA. Sequencing is relatively time consuming, as the process must be done to fairly short lengths of DNA at a time. This tutorial will help you to understand the process of DNA sequencing.

Type: Tutorial

The Circulatory System and the Heart:

This Khan Academy video explains the major vessels involved in the flow of blood and follows the steps that blood takes as it travels through the heart.

Type: Tutorial

Diffusion and Osmosis:

This Khan Academy tutorial guides you through the processes of diffusion and osmosis while explaining the vocabulary and terminology involved in detail.

Type: Tutorial

Introduction to the Cell Membrane:

This Khan Academy tutorial addresses the importance of the phospholipid bilayer in the structure of the cell membrane. The types of molecules that can diffuse through the cell membrane are also discussed.

Type: Tutorial

Parts of the Cell:

This Khan Academy tutorial describes the differences between prokaryotic and eukaryotic cells. It then goes on to discuss in detail the structures and their functions found in the eukaryotic cell.

Type: Tutorial

Proton Pump:

This tutorial will help you to understand how a concentration gradient across a membrane is used. When a molecule or an ion is moved across a membrane from an area of low concentration to an area of high concentration then a gradient is generated. This gradient can be chemical or it can also create a difference in electrical charge across the membrane if ions are involved. The proton pump generates an electrical and chemical gradient that can be used to create ATP which can drive a large number of different biochemical reactions.

Type: Tutorial

Cell Membrane Proteins:

Students will learn about the different types of proteins found in the cell membrane while viewing this Khan Academy tutorial video.

Type: Tutorial

Bacteria:

This video from the Khan Academy introduces the symbiotic relationship between the many bacteria that live inside the human body. The basics of bacteria structure, reproduction, and bacterial infections are discussed.

Type: Tutorial

ATP Synthesis During Photosynthesis:

Photosynthesis is often described as the reverse of cellular respiration. Respiration breaks down complex molecules to release energy that is used to make ATP. Photosynthesis takes energy from photons and uses it to build complex molecules. However both systems use an electron transport chain and associated proton pump and ATP synthase as a key part of the process. This tutorial will help you to understand the electron transport chain and ATP synthesis.

Type: Tutorial

How Intracellular Receptors Regulate Gene Transcription:

Gene transcription is controlled by multiple factors. Some proteins bind to DNA sequences and start the process of gene transcription. RNA synthesis can only occur when these activators are bound to specific DNA sequences. This tutorial will help you to understand the process of gene transcription.

Type: Tutorial

The Role of Vitamins in Human Nutrition:

This tutorial will help you to understand the role that vitamins play in human nutrition. Vitamins interact with enzymes to allow them to function more effectively. Though vitamins are not consumed in metabolism, they are vital for the process of metabolism to occur.

This challenging tutorial addresses the concept at a high level of complexity.

Type: Tutorial

DNA Three Letter Words:

You will see how the genetic code, using the DNA alphabet A,T,C, and G, produces codons to specify the 20 known amino acids. Each codon consists of a three letter code producing 64 possible words which specify the amino acids and stop signals.

Type: Tutorial

The Immune Response:

This tutorial will help students understand how the immune system of vertebrates is characterized by acquired responses that are highly specific to particular antigens. This system has the advantage of having a cellular memory for previous infections.

Type: Tutorial

Polymerase Chain Reaction:

This tutorial will help you to understand the procedure of amplifying a single copy of DNA into millions of copies. Polymerase chain reaction is a molecular prototyping technique which helps in copying small segments of DNA into significant amounts required for molecular and genetic analyses.

Type: Tutorial

Allergy Immune Response:

This tutorial will help you to understand how allergies develop. Allergies are exaggerated immune responses caused by B cells producing excess IgE antibodies. An allergen (food, dust) is a foreign substance, which binds to the antibodies and triggers a reaction that includes the production of histamine.

This challenging tutorial addresses the concept at a very high level of complexity.

Type: Tutorial

Cytotoxic T-Cell Activity Against Target Cells:

One of the functions of the T-Cells in the immune system is to attack and destroy infected cells. Target cells are cells that have been attacked by a virus. When the target cells have been taken over by a virus and they do not have a good chance of surviving, they trigger their own death. This action reduces the chance that other nearby cells will become infected.

This challenging tutorial addresses the concept at a high level of complexity.

Type: Tutorial

Phagocytosis:

This tutorial will help you to understand the function of phagocytes. Phagocytes are specialized cells that ingest and break down foreign material including bacteria and viruses.

This challenging tutorial addresses the concept at a high level of complexity.

Type: Tutorial

Regulated Secretion:

This online tutorial will help you to understand the process of regulated secretion. In regulated secretion, proteins are secreted from a cell in large amounts when a specific signal is detected by the cell. The specific example used in this tutorial is the release of insulin after a glucose signal enters a pancreatic beta cell.

Type: Tutorial

Conducting System of the Heart:

This tutorial will help you to understand how all of the components of the heart are able to work together without direct control from the central nervous system. This video shows that for proper function of the heartbeat, it is necessary that all of the muscle fibers in a region contract in unison.

Type: Tutorial

T-Cell Dependent Antigens:

T-cells perform a wide variety of functions in the immune system. In this tutorial you will understand the structure and function of the T-cells.

Type: Tutorial

Maturation of the Follicle and Oocyte:

This tutorial will help you to understand the function of the follicle. Each follicle is a single egg cell surrounded by several layers of follicle cells. An ovary consists of many follicles. The follicle cells protect and nourish the egg prior to its release into the oviducts during ovulation.

Type: Tutorial

Baroreceptor Reflex Control of Blood Pressure:

Blood pressure is determined by the force of the blood acting on the walls of the blood vessels. Two factors determine the size of this force. One is the volume of blood being pumped through the vessel. The other is the size of the vessels. Changes in blood pressure can be caused by either a change in the amount of blood being pumped or by a change in the size of the blood vessels. Feedback mechanisms, described in this animation, will alter heart rate and blood vessel dilation to maintain blood pressure at appropriate levels.

Type: Tutorial

Chemoreceptor Reflex Control of Blood Pressure:

This tutorial will help students to understand how concentrations of gases in the blood change during breathing. This animation shows high carbon dioxide concentrations and low oxygen concentrations indicating that gas exchage is occurring at a slower than ideal rate. Because of this, heart rate increases or decreases to compensate the exchange of gas.

Type: Tutorial

Virus:


This tutorial will help the student understand about viruses which are small infectious agents that replicate only inside the living cells of other organisms.

Type: Tutorial

Cells Through Different Microscopes:

This tutorial will help the learner visualize how a cell or single celled organism can differ in its view when looked at under different magnifications and different types of microscopes. This tutorial can be used by the teacher as an added resource for their lesson about different microscopes and how they work..

Type: Tutorial

Polymerase Chain Reaction:

This tutorial introduces the polymerase chain reaction (PCR), which is a technique used in molecular biology to make multiple copies of a gene even when only small amounts of DNA are available.

Type: Tutorial

Conserving Our Spectacular, Vulnerable Coral Reefs :

How do coral reef conservationists balance the environmental needs of the reefs with locals who need the reefs to survive? Joshua Drew draws on the islands of Fiji and their exemplary system of protection, called "connectivity", which also keep the needs of fishermen in mind.

Type: Tutorial

DNA: The Book of You:

Your body is made of cells -- but how does a single cell know to become part of your nose, instead of your toes? The answer is in your body's instruction book: DNA. Joe Hanson compares DNA to a detailed manual for building a person out of cells -- with 46 chapters (chromosomes) and hundreds of thousands of pages covering every part of you.

Type: Tutorial

Not All Scientific Studies are Created Equal:

Every day, we are bombarded by attention grabbing headlines that promise miracle cures to all of our ailments -- often backed up by a "scientific study." But what are these studies, and how do we know if they are reliable? David H. Schwartz dissects two types of studies that scientists use, illuminating why you should always approach the claims with a critical eye.

Type: Tutorial

The Carbon Cycle:

What exactly is the carbon cycle? Nathaniel Manning provides a basic look into the cyclical relationship of carbon, humans and the environment.

Type: Tutorial

Dead Stuff: The Secret Ingredient in Our Food Chain:

When you picture the lowest levels of the food chain, you might imagine herbivores happily munching on lush, living green plants. But this idyllic image leaves out a huge (and slightly less appetizing) source of nourishment: dead stuff. John C. Moore details the "brown food chain," explaining how such unlikely delicacies as pond scum and animal feces contribute enormous amounts of energy to our ecosystems.

Type: Tutorial

Cells vs. Virus: A Battle for Health:

All living things are made of cells. In the human body, these highly efficient units are protected by layer upon layer of defense against icky invaders like the cold virus. Shannon Stiles takes a journey into the cell, introducing the microscopic arsenal of weapons and warriors that play a role in the battle for your health.

Type: Tutorial

What Causes Antibiotic Resistance?:

This short video describes the process of antibiotic resistance. Right now, you are inhabited by trillions of micro organisms. Many of these bacteria are harmless (or even helpful!), but there are a few strains of ‘super bacteria' that are pretty nasty -- and they're growing resistant to our antibiotics. Why is this happening? Kevin Wu details the evolution of this problem that presents a big challenge for the future of medicine.

Type: Tutorial

The Case of the Vanishing Honeybees:

In the past decade, the US honeybee population has been decreasing at an alarming and unprecedented rate. While this is obviously bad news for honeypots everywhere, bees also help feed us in a bigger way -- by pollinating our nation's crops. Emma Bryce investigates potential causes for this widespread colony collapse disorder.

Type: Tutorial

Activation Energy-Kickstarting Chemical Reactions:

Chemical reactions are constantly happening in your body -- even at this very moment. But what catalyzes these important reactions? This short video explains how enzymes assist the process, while providing a light-hearted way to remember how activation energy works.

Type: Tutorial

The Secret Life of Plankton:

This short video opens up the oceans' microscopic ecosystem, revealing its beauty and complexity. Footage from the Plankton Chronicles Project is used to create a video designed to ignite wonder and curiosity about this hidden world that underpins our own food chain.

Type: Tutorial

How the Heart Actually Pumps Blood:

This TED ED original lesson takes a closer look at how the heart pumps blood. For most of history, scientists weren't quite sure why our hearts were beating or even what purpose they served. Eventually, we realized that these thumping organs serve the vital task of pumping clean blood throughout the body. But how? Edmond Hui investigates how it all works by taking a closer look at the heart's highly efficient ventricle system.

Type: Tutorial

The Chemical Structure of DNA:


This tutorial will help the learners with their understanding of chemical structure of DNA.

Type: Tutorial

Interactive Carbon Lab:

This lab simulation will allow you to explore how carbon circulates through the environment. Through data collection and analysis, you will experiment with the impact that humans are having on the cycling of carbon and make data based predictions on how these impacts may change environmental outcomes to the year 2100.

Type: Tutorial

DNA Structure:

This tutorial will help the learners to understand structure of DNA and how this structure allows for accurate replication.

Type: Tutorial

DNA Replication:

This tutorial will help learners understand the process of DNA replication, including the enzymes involved. Learners will be able to recognize that an exact copy of DNA must be created prior to cell division.

Type: Tutorial

Cell Anatomy:

This tutorial will help the learners to learn about the anatomy of the cell. As the learners move the cursor over each cell organelle, they are shown information about that organelle's structure and function.

Type: Tutorial

Prokaryotes, Eukaryotes, & Viruses Tutorial:

This a mostly text resource that provides accurate, straight-forward descriptions of prokaryotes, eukaryotes, and viruses. It could be a great tool to help students compare and contrast organisms with each other and viruses, or a good review passage.

Type: Tutorial

Video/Audio/Animations

Will an Ice Cube Melt Faster in Freshwater or Saltwater?:

With an often unexpected outcome from a simple experiment, students can discover the factors that cause and influence thermohaline circulation in our oceans. In two 45-minute class periods, students complete activities where they observe the melting of ice cubes in saltwater and freshwater, using basic materials: clear plastic cups, ice cubes, water, salt, food coloring, and thermometers. There are no prerequisites for this lesson but it is helpful if students are familiar with the concepts of density and buoyancy as well as the salinity of seawater. It is also helpful if students understand that dissolving salt in water will lower the freezing point of water. There are additional follow up investigations that help students appreciate and understand the importance of the ocean's influence on Earth's climate.

Type: Video/Audio/Animation

Marine fossils in the Arctic landscape:

In this video, research is presented describing scientific studies of marine fossils found in Arctic regions.

Type: Video/Audio/Animation

HIV Life Cycle:


This video presentation will help you to understand how HIV infects a cell and replicates itself using reverse transcriptase and the host's cellular machinery.

Type: Video/Audio/Animation

Development of the Human Embryonic Brain:


This video presentation shows how the fetal brain grows during pregnancy, both in terms of its size and the number of neurons.

Type: Video/Audio/Animation

Zebrafish Heart Regeneration:


This video presentation will help to understand the regeneration process in a zebrafish. When the zebrafish heart is damaged, the wound site is rapidly sealed with a fibrin clot that stems bleeding within seconds. Following clot formation, the tissue that surrounds the heart muscle, the epicardium, gradually covers the fibrin clot via migration and cell division. Over the next few months, new cardiac muscle is produced and replaces the clot.

Type: Video/Audio/Animation

Mechanisms of Evolution:

This TED Ed video explains the mechanisms of evolutionary change: change in population size, sexual selection, mutation, gene flow, and natural selection.

Type: Video/Audio/Animation

Inquiry and Ocean Exploration:

Ocean explorer Robert Ballard gives a TED Talk relating to the mysteries of the ocean, and the importance of its continued exploration.

Type: Video/Audio/Animation

Photosynthesis:

  • Observe the photosynthesis mechanism in the plant
  • Learn about the main chemical reactions that takes place during photosynthesis
  • Learn how solar energy is converted into chemical energy

Type: Video/Audio/Animation

Lab: Restriction Analysis:

  • An interactive exercise for using agarose gel electrophoresis for separating DNA molecules
  • Explain how restriction endonucleases is used in restriction analysis of DNA

Type: Video/Audio/Animation

Lab: DNA Extraction:

  • Background on the discovery of the DNA double helix
  • Contains an interactive activity for base pairing
  • Contains an interactive activity for DNA extraction

Type: Video/Audio/Animation

Lab: Bacterial Transformation:

  • This activity provides a historical background about research related to bacterial analysis
  • Contains an animation that shows how enzymes work on cutting DNA strands

Type: Video/Audio/Animation

Lab: DNA Fingerprint: Alu:

  • Background on tracking human ancestry using the alu marker
  • Animation on polymerase chain reaction, PCR
  • Interactive activity for performing PCR

Type: Video/Audio/Animation

Viruses:

This videos discusses how viruses work.

Type: Video/Audio/Animation

Bacteria:

This video discusses how bacteria spread and the pros and cons of bacteria.

Type: Video/Audio/Animation

Photosynthesis:

This video provides an overview of photosynthesis.

Type: Video/Audio/Animation

Mount St. Helens: Rising From the Ashes :

In this NSF video and reading selection evolutionary biologist and ecologist John Bishop documents the return of living things to Mount St. Helens after the largest landslide in recorded history. This is a rare opportunity for scientists to get to study a devastated area and how it comes back from scratch in such detail.

Type: Video/Audio/Animation

Citizen Science:

In this National Science Foundation video and reading selection lab ecologist Janis Dickinson explains how she depends on citizen scientists to help her track the effects of disease, land-use change and environmental contaminants on the nesting success of birds.

Type: Video/Audio/Animation

Photosynthesis animation and other cell processes in animation:

This site has fantastic short Flash animations of intricate cell processes, including photosynthesis and the electron transport chain.

Type: Video/Audio/Animation

Pocket Mouse Evolution:

This simulation shows the spread of a favorable mutation through a population of pocket mice. Even a small selective advantage can lead to a rapid evolution of the population.

Type: Video/Audio/Animation

Introducing Green Chemistry: The Science of Solutions:

This lesson introduces students to Green Chemistry, the design of chemical products and processes that reduce or eliminate the use and/or the generation of hazardous substances. Green chemistry is a proactive approach to pollution prevention that teaches chemists how to develop products and materials in a manner that does not use hazardous substances, thus avoiding much waste, hazards and associated costs. The goal of this lesson is to introduce students to the 12 Principles of Green Chemistry and how they relate to a chemical process. These principles provide a framework for scientists, engineers and chemistry students to use when designing new materials, products, processes, and systems. The Principles focus on sustainable design criteria and have proven to be the source of innovative solutions to a wide range of problems. Through this lesson, students will also use weight and measurement to understand the concept of a recipe as it is applied to a chemical process and think critically about that process and how it might be improved. Students will be asked to use a wasteful, inefficient procedure to make glue and be challenged to improve the procedure-during which they will unknowingly use the 12 Principles. Before starting this lesson, students should have been introduced to the periodic table and properties of matter. The estimated time for this lesson is 50-60 minutes. 

Type: Video/Audio/Animation

Variation Is Essential: How Does Variation Within a Population Affect the Survival of a Species?:

This is a lesson about phenotypical variation within populations and how these differences are essential for biological evolution. Students will use a model organism (in this case, kidney beans) to explore variation patterns and subsequently connect these differences to artificial & natural selection. The NGSS’ CrossCutting Concepts and Science & Engineering Practices are embedded throughout the lesson.

The main learning objectives are:

  • Using a model (kidney beans) to explore the natural variations within a population.
  • Measuring differences between individuals in a population (population of beans).
  • Describing how genetic/phenotypic variation is a key part of biological evolution because it is a prerequisite for natural selection.
  • Demonstrating in which ways genetic variation is advantageous to a population because it enables some individuals to adapt to the environment while maintaining the survival of the population.

The NGSS Performance Expectations covered are HS-LS4-2. & HS-LS4-4.

Type: Video/Audio/Animation

Virtual Manipulatives

Split Brain Experiments:

The split brain experiments revealed that the right and the left hemisphere in the brain are good at different things. For instance, the right hemisphere is good at space perception tasks and music while the left is good at verbal and analytic tasks. This game guides students through some examples of the split-brain phenomenon and how the differences are understood.

Type: Virtual Manipulative

The Blood Typing Game:

This educational game is about blood types, blood typing, and blood transfusions. Your challenge is to save patients in urgent need of blood transfusions. Your job is to decide what blood type these patients belong to in order to administer safe blood transfusions. At the end you will be evaluated: if you make no mistakes at all you will get all five blood drops.

Type: Virtual Manipulative

Illustrating the process of diffusion :


This virtual manipulative will help the students to understand that osmosis is the movement of water molecules from an area of high concentration across a semipermeable membrane to an area of low concentration. This illustration of the diffusion process will help the students to understand the concept of osmotic pressure which is created by the movement of the water based on their concentration gradient and thus resulting in the difference of the solute concentration.

Type: Virtual Manipulative

Reactions Rates:

This virtual manipulative will allow you to explore what makes a reaction happen by colliding atoms and molecules. Design your own experiments with different reactions, concentrations, and temperatures. Recognize what affects the rate of a reaction.

Areas to Explore:

  • Explain why and how a pinball shooter can be used to help understand ideas about reactions.
  • Describe on a microscopic level what contributes to a successful reaction.
  • Describe how the reaction coordinate can be used to predict whether a reaction will proceed or slow.
  • Use the potential energy diagram to determine : The activation energy for the forward and reverse reactions; The difference in energy between reactants and products; The relative potential energies of the molecules at different positions on a reaction coordinate.
  • Draw a potential energy diagram from the energies of reactants and products and activation energy.
  • Predict how raising or lowering the temperature will affect a system in the equilibrium.

Type: Virtual Manipulative

Beer's Law Lab:

This activity will allow you to make colorful concentrated and dilute solutions and explore how much light they absorb and transmit using a virtual spectrophotometer.
You can explore concepts in many ways including:

  • Describe the relationships between volume and amount of solute to solution concentration.
  • Explain qualitatively the relationship between solution color and concentration.
  • Predict and explain how solution concentration will change for adding or removing: water, solute, and/or solution.
  • Calculate the concentration of solutions in units of molarity (mol/L).
  • Design a procedure for creating a solution of a given concentration.
  • Identify when a solution is saturated and predict how concentration will change for adding or removing: water, solute, and/or solution.
  • Describe the relationship between the solution concentration and the intensity of light that is absorbed/transmitted.
  • Describe the relationship between absorbance, molar absorptivity, path length, and concentration in Beer's Law.
  • Predict how the intensity of light absorbed/transmitted will change with changes in solution type, solution concentration, container width, or light source and explain why?

Type: Virtual Manipulative

Build a GeneNetwork:


The lac operon is a set of genes which are responsible for the metabolism of lactose in some bacterial cells. Students will explore the effects of mutation within the lac operon by adding or removing genes from the DNA.

  • Predicts the effects on lactose metabolism when the various genes and DNA control elements are mutated (added or removed).
  • Predicts the effects on lactose metabolism when the concentration of lactose is changed.
  • Explain the roles of Lacl, LacZ, and LacY in lactose regulation.

Type: Virtual Manipulative

Natural Selection:

Students will explore natural selection by controlling the environment and causing mutations in bunnies. This will demonstrate how natural selection works in nature. They will have the opportunity to throw in different variables to see what will make their species of rabbit survive.

Type: Virtual Manipulative

DNA Extraction Virtual Lab:

In this interactive Biotechniques virtual lab, you will isolate DNA from a human test subject and learn the uses for DNA obtained through extraction. The "Try It Yourself" section below the virtual lab gives instruction and background information about how to extract DNA from living tissue using basic materials available in grocery stores.

Type: Virtual Manipulative

Histogram Tool:

This virtual manipulative histogram tool can aid in analyzing the distribution of a dataset. It has 6 preset datasets and a function to add your own data for analysis.

Type: Virtual Manipulative

Molecular Expressions: Introduction to microscopy:

This site provides an introduction to microscopy and microscopes including history, images, and interactives.

Type: Virtual Manipulative

Membrane Channel Simulations:

This interactive cell membrane simulation allows students to see how different types of channels allow particles to move through the membrane.

Sample learning goals:

  • Predict when particles will move through the membrane and when they will not.
  • Identify which particle type will diffuse depending on which type of channels are present.
  • Predict the rate of diffusion based on the number and type of channels present.

Type: Virtual Manipulative

Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this course.