Access M/J Comprehensive Science 3   (#7820017)

Course Standards

General Course Information and Notes

General Notes

Access Courses: Access courses are intended only for students with a significant cognitive disability. Access courses are designed to provide students with access to the general curriculum. Access points reflect increasing levels of complexity and depth of knowledge aligned with grade-level expectations. The access points included in access courses are intentionally designed to foster high expectations for students with significant cognitive disabilities.

Access points in the subject areas of science, social studies, art, dance, physical education, theatre, and health provide tiered access to the general curriculum through three levels of access points (Participatory, Supported, and Independent). Access points in English language arts and mathematics do not contain these tiers, but contain Essential Understandings (or EUs). EUs consist of skills at varying levels of complexity and are a resource when planning for instruction.

English Language Development ELD Standards Special Notes Section:

Teachers are required to provide listening, speaking, reading and writing instruction that allows English language learners (ELL) to communicate information, ideas and concepts for academic success in the content area of Science.  For the given level of English language proficiency and with visual, graphic, or interactive support, students will interact with grade level words, expressions, sentences and discourse to process or produce language necessary for academic success The ELD standard should specify a relevant content area concept or topic of study chosen by curriculum developers and teachers which maximizes an ELL’s need for communication and social skills. To access an ELL supporting document which delineates performance definitions and descriptors, please click on the following link: http://www.cpalms.org/uploads/docs/standards/eld/SC.pdf.

 

For additional information on the development and implementation of the ELD standards, please contact the Bureau of Student Achievement through Language Acquisition at sala@fldoe.org.

Additional Instructional Resources:
A.V.E. for Success Collection is provided by the Florida Association of School Administrators: http://www.fasa.net/4DCGI/cms/review.html?Action=CMS_Document&DocID=139. Please be aware that these resources have not been reviewed by CPALMS and there may be a charge for the use of some of them in this collection.

General Information

Course Number: 7820017
Course Path:
Abbreviated Title: ACCESS M/J COMPSCI 3
Course Length: Year (Y)
Course Attributes:
  • Class Size Core Required
Course Status: Course Approved
Grade Level(s): 6,7,8

Student Resources

Vetted resources students can use to learn the concepts and skills in this course.

Original Student Tutorials

The Atom Part 2: The History of the Atom:

Follow the story of how the model of the atom has changed over time in this interactive tutorial.

Type: Original Student Tutorial

The Atom Part 1: Big Things Come in Small Packages:

Explore atoms--the smallest unit of matter--and how they are made up of protons, neutrons, and electrons in this interactive tutorial.

Type: Original Student Tutorial

Volume of Spherical Bubble Tea:

Learn how to calculate the volume of spheres while learning how they make Bubble Tea in this interactive tutorial.

Type: Original Student Tutorial

Voyage Across the Universe:

Learn about the variety and amazing features of our universe in this interactive tutorial. 

Type: Original Student Tutorial

Think Like a Scientist:

Learn about the tools of science as we look at the mystery of bird migrations in this interactive tutorial. 

Type: Original Student Tutorial

Goldilocks and the Three...Planets?:

Compare conditions on Venus, Earth, and Mars, and learn why Earth is an ideal place for life in this interactive tutorial.

Type: Original Student Tutorial

Is It Science or Pseudoscience?:

Learn the differences between science and pseudoscience in this interactive tutorial.

Type: Original Student Tutorial

Using Science to Make Informed Decisions:

Learn how science can help us make informed decisions that improve our lives as you complete this interactive tutorial.

Type: Original Student Tutorial

Tides:

Explore the causes of tides as they occur along the coasts around the world in this interactive tutorial.

Type: Original Student Tutorial

Solar and Lunar Eclipses:

Explore and contrast solar and lunar eclipses in this interactive tutorial. By the end, you'll learn how interactions between the Sun, Earth, and moon cause these cool phenomena. 

Type: Original Student Tutorial

Technology is Essential in Science:

Technology is essential to scientific knowledge. In this interactive tutorial, you will learn how technology has helped us make scientific discoveries throughout history. 

Type: Original Student Tutorial

The Hunt for Exoplanets:

Learn how science relies on creative and innovative thinking as we explore the science of discovering exoplanets in this interactive tutorial. Science is a problem solving endeavor as we try and figure out and learn new things. The answers are hard to find, but if we keep asking questions and building on what we know, then we can solve problems to things we once were thought were impossible!

 

Type: Original Student Tutorial

Stop the Zombie Virus by Interpreting Graphs:

Help scientists find the most effective vaccine for Zombie Virus vaccine by effectively analyzing and summarizing experimental data. In this interactive tutorial, you'll write a scientific question, a claim, supporting evidence and an explanation of what happened during the experiment.

Type: Original Student Tutorial

Science Research: Developing a Hypothesis:

Learn how to write an effective hypothesis with sharks as a focus in this interactive tutorial. A hypothesis should be testable and falsifiable. 

Type: Original Student Tutorial

Exploring the Periodic Table, Part 2: Groups:

Explore the organization of elements into groups on the periodic table and what the group location indicates about an element's atomic structure. 

This is part 2 of 2 in a series of tutorials on the periodic table. Click below to open part 1.

Type: Original Student Tutorial

Exploring the Periodic Table Part 1: Periods:

Explore the organization of elements on the Periodic Table and pay special attention to energy levels of elements that share periods in this interactive tutorial.

This is part 1 of 2 in a series of tutorials on the periodic table. Click below to open part 2.

Type: Original Student Tutorial

Science Research: Writing a Conclusion:

Learn how to write a valid conclusion from a scientific investigation. In this interactive tutorial, you'll also learn how to answer questions using scientific reasoning. 

Type: Original Student Tutorial

Energy and Cellular Respiration:

Learn how food is broken down to produce energy for cells in the in the form of ATP in this interactive tutorial. 

Type: Original Student Tutorial

Star Properties:

Discover how scientists classify stars according to their brightness, temperature, color, and size in this interactive tutorial.

Type: Original Student Tutorial

Challenges of Space Travel:

Explore the challenges related to space travel in this interactive tutorial.

Type: Original Student Tutorial

The Law of Universal Gravitation:

Learn about Isaac Newton's Law of Universal Gravitation. This law helps calculate the force of gravity dependent on the mass of the objects and the distance between them. 

Type: Original Student Tutorial

Scientist's Next Top Model:

Come with me as we select Scientist's Next Top Model! When does an abstract idea become a real scientific model? When the model appears in scientific journals and textbooks all over the world. Before a model can grace the cover of these high profile, peer reviewed journals and textbooks it must go through a rigorous process. How does a model go from an idea to a scientific model? What took me 2000 years I am going to make happen for one lucky model in just 15 short minutes!

Competition is tough and each model will have to showcase why they are able to represent themselves as Scientist’s Next Top Model.

Type: Original Student Tutorial

The Universe:

Explore the universe and identify key facts about galaxies and stars, how scientists learn about the universe, and contemplate the massive size of the universe. 

Type: Original Student Tutorial

Characteristics of the Electromagnetic Spectrum:

Examine the electromagnetic spectrum and characteristics associated with different portions of the spectrum in this interactive tutorial.

Type: Original Student Tutorial

Sunny with a Side of Photons: How to Build a Sun:

Explore the Sun and how energy goes from the Sun's core to our Earth in this interactive tutorial.

Type: Original Student Tutorial

Mixtures and Pure Substances:

Learn the difference between pure elements, pure compounds, mixtures and solutions in this interactive tutorial.

Type: Original Student Tutorial

Cooking with Chef Ragu: Acids, Bases, and Salts:

Join Chef Ragu as he learns about acids, bases, and salts while he cooks up something special. In this interactive tutorial you will compare and classify the properties of compounds that are acids, bases, and salts and identify basic examples of these compounds.

Type: Original Student Tutorial

Changing the Driving Age?:

Learn how to evaluate the soundness of several speakers' arguments as they debate whether or not the driving age should be raised from 16 years old to 18 or even higher with this interactive tutorial.

Type: Original Student Tutorial

Where Have All the Scrub-Jays Gone?:

Investigate the limiting factors of a Florida ecosystem and describe how these limiting factors affect one native population-the Florida Scrub-Jay.

Type: Original Student Tutorial

Hot on the Trail:

Investigate how temperature affects the rate of chemical reactions in this interactive tutorial.

Type: Original Student Tutorial

Classifying and Comparing Physical Properties:

Learn to identify physical properties, compare and contrast substances based on their physical properties. In this interactive tutorial, you'll focus on density and determine whether physical properties have the ability to change.

Type: Original Student Tutorial

Yes or No to GMO?:

Learn what genetic engineering is and some of the applications of this technology. In this interactive tutorial, you’ll gain an understanding of some of the benefits and potential drawbacks of genetic engineering. Ultimately, you’ll be able to think critically about genetic engineering and write an argument describing your own perspective on its impacts.

Type: Original Student Tutorial

Mass and Weight: What's the Difference?:

Differentiate between weight and mass, recognizing that weight is the amount of gravitational pull on an object and is distinct though proportional to mass. In this interactive tutorial you'll help a curious chicken learn more about this important topic.

Type: Original Student Tutorial

Analyzing the Declaration of Independence :

Learn how to analyze the ideas, complaints, and language found in the Declaration of Independence, one of the most important documents in the history of the United States with this interactive tutorial.

Type: Original Student Tutorial

Knights of the Round and Round Table-The Carbon Cycle:

Follow our quest to learn how the element carbon is cycled on Earth with this interactive tutorial.

Type: Original Student Tutorial

Understanding the Preamble :

Analyze the Preamble to the U.S. Constitution - line by line, word by word. You'll be a Preamble expert by the end of this interactive tutorial!  

Type: Original Student Tutorial

Atoms Make Up Everything:

Learn to demonstrate that there are a finite number of elements that combine to form all existing compounds, whether living or non-living, and in any state of matter.

Type: Original Student Tutorial

Measuring Amounts of "Stuff": Exploring Density:

Learn to find the density (how many g/cm3) of three different objects, and explain what that number means.

Type: Original Student Tutorial

Center Stage: Models of the Solar System:

Compare and contrast the heliocentric and geocentric models of the Solar System in this interactive tutorial.

Type: Original Student Tutorial

Conservation of Mass and Energy in Living Systems:

Learn how to identify explicit evidence and understand implicit meaning in a text. You should be able to describe how matter and energy are continuously transferred within and between organisms and their physical environment; and cite evidence that living systems follow the Laws of Conservation of Mass and Energy.

Type: Original Student Tutorial

Conservation of Mass:

Understand and demonstrate that mass is conserved when substances undergo physical and chemical changes in a closed system.

Type: Original Student Tutorial

Photosynthesis:

Learn about the process of photosynthesis and ways that plants convert energy from the sun into glucose with this interactive tutorial.

Type: Original Student Tutorial

Your Ice Cream Is Moving:

Learn to sequence a series of diagrams to create a model of a substance transitioning from a solid state to a liquid state in this interactive tutorial.

Type: Original Student Tutorial

Physical and Chemical Changes:

Learn to distinguish a physical change from a chemical change in this interactive tutorial.

Type: Original Student Tutorial

Educational Game

Stop Disasters Before They Happen:

Students attempt to save towns from damage prior to the arrival of several different natural disasters. Students will learn the importance of early prevention and actions to protect others, themselves and their property when faced with a natural disaster. Certain disasters are more appropriate for particular grade levels. Each scenario takes between 20 and 45 minutes to play, depending on the disaster for which your students are trying to prepare. There are five scenarios available, hurricane, tsunami, flood, earthquake, and wildfire. Each scenario can be played on easy, medium or hard difficulty levels. As with life, there are no "perfect solutions" to each scenario and no "perfect score", so students can play multiple times and the scenarios will still be slightly different.These simulation are part of a larger website that provides multiple links for natural disasters.

Type: Educational Game

Image/Photographs

View the Earth from a Satellite:

Choose a satellite to see the current view of Earth from that satellite.

Type: Image/Photograph

Hubble Satellite Telescope ePhoto Gallery:

This site offers images captured by Hubble, a telescope that orbits Earth! You will find images of planets, stars, galaxies, moons, nebulae, and more.

Type: Image/Photograph

Perspectives Video: Experts

MicroGravity Sensors & Statistics:

Statistical analysis played an essential role in using microgravity sensors to determine location of caves in Wakulla County.

Type: Perspectives Video: Expert

Technology and Oceanography:

Some places on Earth can be quite remote, like the depths of the ocean. Get there with technology.

Type: Perspectives Video: Expert

Perspectives Video: Professional/Enthusiasts

Properties of Materials:

This discussion about the physical properties of flamenco guitars is full of good vibes.

Type: Perspectives Video: Professional/Enthusiast

How Material Properties affect Audio Recordings:

Want a clean sound in your recording? Oxidation will test your mettle. Make sure you choose the right material for the job.

Type: Perspectives Video: Professional/Enthusiast

Presentation/Slideshow

What is Science?:

Resource provides a succinct overview of the nature of science; what science is and is not. Information includes the aims of scientific pursuits, principles, process and thinking.

Type: Presentation/Slideshow

Problem-Solving Tasks

DVD Profits, Variation 1:

In this task, students are asked to determine the unit price of a product under two different circumstances. They are also asked to generalize the cost of producing x items in each case.

Type: Problem-Solving Task

Glasses:

In this resource, students will determine the volumes of three different shaped drinking glasses. They will need prior knowledge with volume formulas for cylinders, cones, and spheres, as well as experience with equation solving, simplifying square roots, and applying the Pythagorean theorem.

Type: Problem-Solving Task

Who Has the Best Job?:

This task asks the student to graph and compare two proportional relationships and interpret the unit rate as the slope of the graph.

Type: Problem-Solving Task

Coffee by the Pound:

In this example, students will answer questions about unit price of coffee, make a graph of the information, and explain the meaning of slope in the given context.

Type: Problem-Solving Task

Comparing Snow Cones:

Students will just be learning about similarity in this grade, so they may not recognize that it is needed in this context. Teachers should be prepared to give support to students who are struggling with this part of the task. To simplify the task, the teacher can just tell the students that based on the slant of the truncated conical cup, the complete cone would be 14 in tall and the part that was sliced off was 10 inches tall. (See solution for an explanation.) There is a worthwhile discussion to be had about parts (c) and (e). The percentage increase is smaller for the snow cones than it was for the juice treats. The snow cones have volume which is equal to those of the juice treats plus the volume of the dome, which is the same in both cases. Adding the same number to two numbers in a ratio will always make their ratio closer to one, which in this case means that the ratio - and thus percentage increase - would be smaller.

Type: Problem-Solving Task

Flower Vases:

The purpose of this task is to give students practice working the formulas for the volume of cylinders, cones and spheres, in an engaging context that provides and opportunity to attach meaning to the answers.

Type: Problem-Solving Task

Shipping Rolled Oats:

Students should think of different ways the cylindrical containers can be set up in a rectangular box. Through the process, students should realize that although some setups may seem different, they result in a box with the same volume. In addition, students should come to the realization (through discussion and/or questioning) that the thickness of a cardboard box is very thin and will have a negligible effect on the calculations.

Type: Problem-Solving Task

Comparing Speeds in Graphs and Equations:

This task provides the opportunity for students to reason about graphs, slopes, and rates without having a scale on the axes or an equation to represent the graphs. Students who prefer to work with specific numbers can write in scales on the axes to help them get started.

Type: Problem-Solving Task

Peaches and Plums:

This task asks students to reason about the relative costs per pound of two fruits without actually knowing what the costs are. Students who find this difficult may add a scale to the graph and reason about the meanings of the ordered pairs. Comparing the two approaches in a class discussion can be a profitable way to help students make sense of slope.

Type: Problem-Solving Task

Equations of Lines:

This task asks the student to understand the relationship between slope and changes in x- and y-values of a linear function.

Type: Problem-Solving Task

Find the Change:

This activity challenges students to recognize the relationship between slope and the difference in x- and y-values of a linear function. Help students solidify their understanding of linear functions and push them to be more fluent in their reasoning about slope and y-intercepts. This task has also produced a reasonable starting place for discussing point-slope form of a linear equation.

Type: Problem-Solving Task

Student Center Activity

Edcite: Mathematics Grade 8:

Students can practice answering mathematics questions on a variety of topics. With an account, students can save their work and send it to their teacher when complete.

Type: Student Center Activity

Text Resources

Why Isn't Pluto A Planet?:

This Frequently Asked Question page can be used by educators and students as a scientific resource to answer the question, "Why isn't Pluto a planet?". From the International Astronomical Union, the definitive answer from the governing body that classified Pluto as a dwarf planet.

Type: Text Resource

American Elements:

This web site features an interactive periodic chart that provides information on the elements, including a description, physical and thermal properties, abundance, isotopes, ionization energy, the element's discoverer, translations of element names into several languages, and bibliographic information on research-and-development publications involving the element. Additional information includes technical information and information on manufactured products for elemental metals, metallic compounds, and ceramic and crystalline products. The American Elements company manufactures engineered and advanced material products.

Type: Text Resource

Tutorials

Cylinder Volume and Surface Area:

This video demonstrates finding the volume and surface area of a cylinder.

Type: Tutorial

Volume of a Sphere:

This video shows how to calculate the volume of a sphere.

Type: Tutorial

Volume of a Cone:

This video explains the formula for volume of a cone and applies the formula to solve a problem.

Type: Tutorial

Linear Equations:

This tutorial will help you to explore slopes of lines and see how slope is represented on the x-y axes.

Type: Tutorial

How the Earth's Tilt Causes Seasons:

This tutorial discusses how the Earth's tilt causes the different seasons. The tutorial supports student learning with visual representations of how the tilt of the Earth as it orbits the Sun influences the seasons in the Northern and Southern Hemispheres.

Type: Tutorial

Seasons and Temperatures:

Spring, summer, fall and winter. Many places on the Earth have seasons. Others do not. What causes the seasons? This tutorial discusses seasonal changes and describes that they are caused by the movement of the Earth around the sun, the tilt of the Earth, and how high the sun will get in the sky.

Type: Tutorial

Converting Speed Units:

In this lesson, students will be viewing a Khan Academy video that will show how to convert ratios using speed units.

Type: Tutorial

Properties of the Solar System:

This website contains numerous interesting facts, images and activities intended to support greater understanding of properties of our solar system.

Type: Tutorial

Video/Audio/Animations

Will an Ice Cube Melt Faster in Freshwater or Saltwater?:

With an often unexpected outcome from a simple experiment, students can discover the factors that cause and influence thermohaline circulation in our oceans. In two 45-minute class periods, students complete activities where they observe the melting of ice cubes in saltwater and freshwater, using basic materials: clear plastic cups, ice cubes, water, salt, food coloring, and thermometers. There are no prerequisites for this lesson but it is helpful if students are familiar with the concepts of density and buoyancy as well as the salinity of seawater. It is also helpful if students understand that dissolving salt in water will lower the freezing point of water. There are additional follow up investigations that help students appreciate and understand the importance of the ocean's influence on Earth's climate.

Type: Video/Audio/Animation

Creating New Tools for Exploration:

In this video, new observation technologies are presented. National Geographic is developing and using these technologies to better capture the world.

Type: Video/Audio/Animation

Inquiry and Ocean Exploration:

Ocean explorer Robert Ballard gives a TED Talk relating to the mysteries of the ocean, and the importance of its continued exploration.

Type: Video/Audio/Animation

Billion-Pixel View of Mars from Curiosity Rover:

  • This interactive tool contains views of Mars taken from Curiosity Rover
  • Students get to observe the a close view of the surface of Mars
  • Snap shots of different things identified on the surface are also displayed

Type: Video/Audio/Animation

Supermodels of Science:

This game aims at showing the use of model organisms in behavioral studies and in detecting the causes of certain diseases

Type: Video/Audio/Animation

What is a Planet?:

This video provides a historical background about the definition of a planet and how different objects discovered in space were classified as planets or fir into a different category

Type: Video/Audio/Animation

Mars Science Laboratory-Curiosity Rover-Mission Animation:

This animation depicts key events of NASA's Mars Science Laboratory mission, which launched in late 2011 and landed a rover, Curiosity, on Mars in August 2012.

Type: Video/Audio/Animation

Element Word Scramble:

Students test their knowledge about the names of elements and learn some of their properties through the hint provided with each scrambled word

Type: Video/Audio/Animation

Element Math Game:

Students determine the number of protons, electrons, neutrons, and nucleons for different atoms

Type: Video/Audio/Animation

Element Matching Game:

Students match the names of elements of the periodic table with their symbols

Type: Video/Audio/Animation

Element Flash Cards:

This game tests students' knowledge about elements, such as their symbols, atomic numbers, and names

Type: Video/Audio/Animation

Science Crossword Puzzles:

A collection of crossword puzzles that test the knowledge of students about some of the terms, processes, and classifications covered in science topics

Type: Video/Audio/Animation

Concentration:

  • Explain the concept of concentration
  • Explain the effect of concentration changes on colors of solutions
  • Demonstrate the effect of changing the amount of solute, or solvent, or both on the concentration of the solution
  • Identify a saturated solution

Type: Video/Audio/Animation

27 Storms: Arlene to Zeta:

This video from NASA presents the 2005 hurricane season with actual data that NASA and NOAA satellites measured. Sea surface temperatures, clouds, storm tracks, and hurricane category labels are shown as the hurricane season progresses.

Type: Video/Audio/Animation

Solar Eclipses:

Every now and then, the Sun, Earth, and Moon align so that, when viewed from parts of the Earth, the Moon eclipses the Sun's light. Solar eclipses are fairly common -- the Moon will block out some portion of the Sun at least twice a year. However, it is still a special event to be able to witness a total solar eclipse. In this video segment adapted from NASA, learn how solar eclipses happen and why they are so difficult to witness.

Type: Video/Audio/Animation

Jupiter: Earth's Shield:

More than 155 planets have been found outside of our solar system since the first extra-solar planet was identified in 1995. The search has long been heavily biased towards finding massive planets with short orbits. Now, to find an Earth-like planet, scientists are looking for a planetary setup that is similar to our own, in which a Jupiter-like planet lies a good distance away from its sun. This video segment adapted from NOVA explores how the arrangement of planets in our solar system may have affected the development of life on Earth.

Type: Video/Audio/Animation

Photosynthesis:

This 2-1/2 minute video segment from Interactive NOVA: "Earth" explores the history of plant biology. The video takes the viewer from the earliest scientific hypotheses that plants "eat" dirt, to our present-day understanding of photosynthesis, the process by which plants use the sun's energy to convert carbon dioxide and water into carbohydrates, a storable form of chemical energy.

Type: Video/Audio/Animation

Solar Wind's Effect on Earth:

The Sun produces a solar wind — a continuous flow of charged particles — that can affect us on Earth. It can, for example, disrupt communications, navigation systems, and satellites. Solar activity can also cause power outages, such as the extensive Canadian blackout in 1989. In this video segment adapted from NASA, learn about solar storms and their effects on Earth.

Type: Video/Audio/Animation

Eclipse of the Century:

In July 1991, the alignment of the Sun, Moon, and Earth produced a rare opportunity — a total solar eclipse with a particularly long duration and a path that crossed easily accessible locations, including a major astronomical observatory in Hawaii. In this video segment adapted from NOVA, learn about the mechanics of solar eclipses and observe the rare 1991 eclipse from the top of Mauna Kea.

Type: Video/Audio/Animation

Space School Musical:

Join teenager Hannah on a trip through the solar system in this "hip-hopera" that uses song and dance to introduce the planets, moons, asteroids and more. Download the lyrics for students to learn and perform or just play the videos in class.

Type: Video/Audio/Animation

Distances Between the Planets Animation:

This animation simulates a voyage from the sun past all nine planets. For convenience, the planets are lined up in the same direction. The animation shows each planet's average distance from the sun.

Type: Video/Audio/Animation

Virtual Manipulatives

Hertzsprung-Russell Diagram Virtual Lab:

This interactive lab explores the Hertzsprung-Russell Diagram in areas of spectrum, classification, luminosity, and temperature. The simulator plots stars according to the areas you chose to explore.

Type: Virtual Manipulative

Photosynthesis: "Putting together with light." An interactive learning module:

This interactive site allows students to explore the structures and functions associated with photosynthesis using animation and self-paced learning. It allows for differentiated learning strategies for ESE/ELL students (self paced, graphic-rich lesson, interactive post introduction animated activity).

This site incorporates an introduction component integrated with an extended learning component.

Type: Virtual Manipulative

Build an Atom:

Build an atom out of protons, neutrons, and electrons, and see how the element, charge, and mass change. Then play a game to test your ideas!

Type: Virtual Manipulative

Periodic Table:

This unique periodic table presents the elements in an interesting visual display. Select an element to find an image of the element, a description, history, and even an animation. Other chemical data is linked as a PDF file (requires Acrobat Reader).

Type: Virtual Manipulative

Gas Density:


Density is defined as mass per unit volume. Density of the gases is highly affected by the pressure and the temperature. This module simulates the measurement of the density of a gas sample. Different gaseous compounds and elements are available and the pressure and temperature of the sample can be adjusted. Learners will understand that density of an ideal gas can be doubled by doubling the pressure or by halving the temperature.

Type: Virtual Manipulative

Seasons and Ecliptic Simulator:

  • Observe the orbit of the earth around the sun and its relationship to seasons
  • Understand the factors affecting Earth's climate
  • Observe the effect of Earth's tilt on the seasons

Type: Virtual Manipulative

Alloys:

In this interactive game you will learn how to make steel alloys. Alloys are mixtures of substances in which the resulting material has metallic properties. They are usually produced by melting the mixture of ingredients. Steel, brass and amalgam are a few examples of alloys.

Type: Virtual Manipulative

Solar System Exploration:

This resource provides an interactive tool for the exploration of the solar system. To navigate the interactive solar system move the mouse to hover the target over different objects, to learn more about each click to access images, information about scientists, homework help, articles, news, missions, time lines, and important facts.

Type: Virtual Manipulative

Density:

This resource will build the following skills:

  • Describe the relationship of mass and volume to density.
  • Compare objects of same mass and different volume and vice versa.
  • Explain that density of a certain object does not vary with its mass or volume.
  • Measure the volume of an object from fluid displacement.
  • Use density to identify an unknown material.

Type: Virtual Manipulative

Balancing Chemical Equations:

This activity will allow you to practice balancing a chemical equation. You will have to make sure you are following the law of conservation of mass and recognize what can change to balance an equation.
You can:

  • Balance a chemical equation.
  • Recognize that the number of atoms of each element is conserved in a chemical reaction.
  • Describe the difference between coefficients and subscripts in a chemical equation.
  • Translate from symbolic to molecular representation.

Type: Virtual Manipulative

States of Matter: Basics:

This simulation will allow you to heat, cool and compress atoms and molecules and watch as they change between solid, liquid and gas phase.
Ideas to investigate:

  • Describe characteristics of three states of matter: solid, liquid and gas.
  • Predict how varying the temperature or pressure changes the behavior of particles.
  • Compare particles in the three different phases.
  • Explain freezing and melting with molecular level detail.
  • Recognize that different substances have different properties, including melting, freezing and boiling temperatures.

Type: Virtual Manipulative

Gas Properties:


Students will pump gas molecules to a box and see what happens as they change the volume, add or remove heat, change gravity, and more. Measure the temperature and pressure, and discover how the properties of the gas vary in relation to each other.

  • Students can predict how changing a variable among pressure, volume, temperature and number influences other gas properties.
  • Students can predict how changing temperature will affect the speed of molecules.
  • Students can rank the speed of molecules in thermal equilibrium based on the relative masses of molecules.

Type: Virtual Manipulative

Explore Buoyancy:

Explore when objects float and when will they sink. Learn how buoyancy works with blocks by modifying the properties of the blocks and the fluid.

Some of the sample learning goals can be:

  • Predict whether an object wills sink or float when place in a liquid, given densities of the object and liquid.
  • Apply the definition of density to both liquids and solids
  • Relate the buoyant force on an object to the weight of liquid it displaces
  • Predict the weight of a completely or partially submerged object of known mass and volume
  • Describe the forces that act on a completely or partially submerged object
  • Explain how an object that is more dense than water can be kept afloat by placing it on an object that is less dense than water.

Type: Virtual Manipulative

pH Scale:

Students can test the pH of several substances and visualize hydronium, hydroxide, and water molecules in solution by concentration or the number of molecules. Students can add water to a given substance to see the effects it will have on the pH of that substance; or they can create their own custom substance.

Type: Virtual Manipulative

My Solar System:

This simulation demonstrates the effect of gravitation in determining planetary orbits as well as that of comets and satellites. This simulation allows you to change initial positions, velocities and masses of bodies and see the resulting orbit.

Type: Virtual Manipulative

Mars Earth Orbit - Actual:

This virtual manipulative allows users to see the revolutions of Earth and Mars relative to the sun. Users can track the distance between both, and put each or both in orbit.

Type: Virtual Manipulative

How Fast do Objects Move in the Solar Sytem?:

This interactive demonstrates the impacts of the gravitational force of the sun on motion of objects in the solar system.

Type: Virtual Manipulative

PhET Gas Properties:

This virtual manipulative allows you to investigate various aspects of gases through virtual experimentation. From the site: Pump gas molecules to a box and see what happens as you change the volume, add or remove heat, change gravity, and more (open the box, change the molecular weight of the molecule). Measure the temperature and pressure, and discover how the properties of the gas vary in relation to each other.

Type: Virtual Manipulative

The Life Cycle of the Star/H-R Diagram:

This is a great resource with online lessons providing inquiry as you learn about the life cycle of the star as well as the usages of the H-R diagram. The images provide a conceptual understanding of the life cycle of the star and how it applies to the H-R diagram. You will enjoy the interactive lab tools as well as the online formative assessment questions.

Type: Virtual Manipulative

Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this course.

Perspectives Video: Expert

Technology and Oceanography:

Some places on Earth can be quite remote, like the depths of the ocean. Get there with technology.

Type: Perspectives Video: Expert

Perspectives Video: Professional/Enthusiasts

Properties of Materials:

This discussion about the physical properties of flamenco guitars is full of good vibes.

Type: Perspectives Video: Professional/Enthusiast

How Material Properties affect Audio Recordings:

Want a clean sound in your recording? Oxidation will test your mettle. Make sure you choose the right material for the job.

Type: Perspectives Video: Professional/Enthusiast

Perspectives Video: Teaching Ideas

Observing Fossils in the Classroom:

Dig into this idea on teaching fossils and age.

Type: Perspectives Video: Teaching Idea

Modeling Atoms:

Many students are initially daunted by the periodic table, but this science teacher has an idea to chip away at their intimidation by building atomic models.

Type: Perspectives Video: Teaching Idea

Solar System Distances:

Does the concept of relative distance register with you? Try this solar system activity.

Type: Perspectives Video: Teaching Idea

Neutral Buoyancy Plankton:

This science educator floats a teaching idea about neutral buoyancy and density.

Type: Perspectives Video: Teaching Idea

Presentation/Slideshow

NASA Spinoff Website:

This website contains information about technologies developed and discoveries made as a result of NASA space research. It also contains links to the NASA Spinoff Virtual Manipulative, NASA Spinoff Game, NASA Exploration and Innovation Timeline Poster, Spinoff Flyers, a Spinoff Powerpoint, and Spinoff Magazine.

Type: Presentation/Slideshow

Problem-Solving Tasks

DVD Profits, Variation 1:

In this task, students are asked to determine the unit price of a product under two different circumstances. They are also asked to generalize the cost of producing x items in each case.

Type: Problem-Solving Task

Glasses:

In this resource, students will determine the volumes of three different shaped drinking glasses. They will need prior knowledge with volume formulas for cylinders, cones, and spheres, as well as experience with equation solving, simplifying square roots, and applying the Pythagorean theorem.

Type: Problem-Solving Task

Sore Throats, Variation 2:

The purpose of this task is to show how the ideas in the RP and EE domains in 6th and 7th grade mature in 8th grade. Parts (a)-(c) could easily be asked of 7th grade students. Part (a) asks students to do what is described in 7.RP.2.a, Part (b) asks students to do what is described in 7.RP.2.c, and Part (c) is the 7th grade extension of the work students do in MAFS.6.EE.3.9.
On the other hand, part (d) is 8th grade work. It is true that in 7th grade, "Students graph proportional relationships and understand the unit rate informally as a measure of the steepness of the related line, called the slope". However, in 8th grade students are ready to treat slopes more formally: 8.EE.5 says students should "graph proportional relationships, interpreting the unit rate as the slope of the graph" which is what they are asked to do in part (d).

Type: Problem-Solving Task

Who Has the Best Job?:

This task asks the student to graph and compare two proportional relationships and interpret the unit rate as the slope of the graph.

Type: Problem-Solving Task

Coffee by the Pound:

In this example, students will answer questions about unit price of coffee, make a graph of the information, and explain the meaning of slope in the given context.

Type: Problem-Solving Task

Comparing Snow Cones:

Students will just be learning about similarity in this grade, so they may not recognize that it is needed in this context. Teachers should be prepared to give support to students who are struggling with this part of the task. To simplify the task, the teacher can just tell the students that based on the slant of the truncated conical cup, the complete cone would be 14 in tall and the part that was sliced off was 10 inches tall. (See solution for an explanation.) There is a worthwhile discussion to be had about parts (c) and (e). The percentage increase is smaller for the snow cones than it was for the juice treats. The snow cones have volume which is equal to those of the juice treats plus the volume of the dome, which is the same in both cases. Adding the same number to two numbers in a ratio will always make their ratio closer to one, which in this case means that the ratio - and thus percentage increase - would be smaller.

Type: Problem-Solving Task

Flower Vases:

The purpose of this task is to give students practice working the formulas for the volume of cylinders, cones and spheres, in an engaging context that provides and opportunity to attach meaning to the answers.

Type: Problem-Solving Task

Shipping Rolled Oats:

Students should think of different ways the cylindrical containers can be set up in a rectangular box. Through the process, students should realize that although some setups may seem different, they result in a box with the same volume. In addition, students should come to the realization (through discussion and/or questioning) that the thickness of a cardboard box is very thin and will have a negligible effect on the calculations.

Type: Problem-Solving Task

Comparing Speeds in Graphs and Equations:

This task provides the opportunity for students to reason about graphs, slopes, and rates without having a scale on the axes or an equation to represent the graphs. Students who prefer to work with specific numbers can write in scales on the axes to help them get started.

Type: Problem-Solving Task

Peaches and Plums:

This task asks students to reason about the relative costs per pound of two fruits without actually knowing what the costs are. Students who find this difficult may add a scale to the graph and reason about the meanings of the ordered pairs. Comparing the two approaches in a class discussion can be a profitable way to help students make sense of slope.

Type: Problem-Solving Task

Equations of Lines:

This task asks the student to understand the relationship between slope and changes in x- and y-values of a linear function.

Type: Problem-Solving Task

Find the Change:

This activity challenges students to recognize the relationship between slope and the difference in x- and y-values of a linear function. Help students solidify their understanding of linear functions and push them to be more fluent in their reasoning about slope and y-intercepts. This task has also produced a reasonable starting place for discussing point-slope form of a linear equation.

Type: Problem-Solving Task

Resource Collection

U.S. South Pole Station:

The National Science Foundation (NSF) funds and manages the U.S. Antarctic Program, which coordinates almost all U.S. science on the continent, including research carried out by other federal agencies. Read about research projects conducted by scientists who come to the pole from nations around the globe and the history of three research stations.

Type: Resource Collection

Text Resource

Kennedy Space Center Annual Report 2012:

The 2012 Report of the Kennedy Space Center includes significant events, engineering achievements, partnerships, environmental work, education work, and outreach. In addition, the final section includes the economic impact and work force diversity.

Type: Text Resource

Tutorial

Mass and Weight Clarification:

This tutorial covers the difference between mass and weight.

Type: Tutorial

Video/Audio/Animations

Concentration:

  • Explain the concept of concentration
  • Explain the effect of concentration changes on colors of solutions
  • Demonstrate the effect of changing the amount of solute, or solvent, or both on the concentration of the solution
  • Identify a saturated solution

Type: Video/Audio/Animation

Solar Eclipses:

Every now and then, the Sun, Earth, and Moon align so that, when viewed from parts of the Earth, the Moon eclipses the Sun's light. Solar eclipses are fairly common -- the Moon will block out some portion of the Sun at least twice a year. However, it is still a special event to be able to witness a total solar eclipse. In this video segment adapted from NASA, learn how solar eclipses happen and why they are so difficult to witness.

Type: Video/Audio/Animation

Virtual Manipulatives

Gas Density:


Density is defined as mass per unit volume. Density of the gases is highly affected by the pressure and the temperature. This module simulates the measurement of the density of a gas sample. Different gaseous compounds and elements are available and the pressure and temperature of the sample can be adjusted. Learners will understand that density of an ideal gas can be doubled by doubling the pressure or by halving the temperature.

Type: Virtual Manipulative

Seasons and Ecliptic Simulator:

  • Observe the orbit of the earth around the sun and its relationship to seasons
  • Understand the factors affecting Earth's climate
  • Observe the effect of Earth's tilt on the seasons

Type: Virtual Manipulative

Alloys:

In this interactive game you will learn how to make steel alloys. Alloys are mixtures of substances in which the resulting material has metallic properties. They are usually produced by melting the mixture of ingredients. Steel, brass and amalgam are a few examples of alloys.

Type: Virtual Manipulative

Archimedes' Principle:

This virtual manipulative will help the students understand Archimedes' principle which states that the buoyant force is equal to the weight of the displaced fluid. This principle applies to both floating and submerged bodies and to all fluids. With this simulation, students will recognize that, if the body is less dense than the liquid it will float, whereas if a body is denser than the fluid, it will sink.

Type: Virtual Manipulative

Density:

This resource will build the following skills:

  • Describe the relationship of mass and volume to density.
  • Compare objects of same mass and different volume and vice versa.
  • Explain that density of a certain object does not vary with its mass or volume.
  • Measure the volume of an object from fluid displacement.
  • Use density to identify an unknown material.

Type: Virtual Manipulative

Balancing Chemical Equations:

This activity will allow you to practice balancing a chemical equation. You will have to make sure you are following the law of conservation of mass and recognize what can change to balance an equation.
You can:

  • Balance a chemical equation.
  • Recognize that the number of atoms of each element is conserved in a chemical reaction.
  • Describe the difference between coefficients and subscripts in a chemical equation.
  • Translate from symbolic to molecular representation.

Type: Virtual Manipulative

States of Matter: Basics:

This simulation will allow you to heat, cool and compress atoms and molecules and watch as they change between solid, liquid and gas phase.
Ideas to investigate:

  • Describe characteristics of three states of matter: solid, liquid and gas.
  • Predict how varying the temperature or pressure changes the behavior of particles.
  • Compare particles in the three different phases.
  • Explain freezing and melting with molecular level detail.
  • Recognize that different substances have different properties, including melting, freezing and boiling temperatures.

Type: Virtual Manipulative

Gas Properties:


Students will pump gas molecules to a box and see what happens as they change the volume, add or remove heat, change gravity, and more. Measure the temperature and pressure, and discover how the properties of the gas vary in relation to each other.

  • Students can predict how changing a variable among pressure, volume, temperature and number influences other gas properties.
  • Students can predict how changing temperature will affect the speed of molecules.
  • Students can rank the speed of molecules in thermal equilibrium based on the relative masses of molecules.

Type: Virtual Manipulative

Explore Buoyancy:

Explore when objects float and when will they sink. Learn how buoyancy works with blocks by modifying the properties of the blocks and the fluid.

Some of the sample learning goals can be:

  • Predict whether an object wills sink or float when place in a liquid, given densities of the object and liquid.
  • Apply the definition of density to both liquids and solids
  • Relate the buoyant force on an object to the weight of liquid it displaces
  • Predict the weight of a completely or partially submerged object of known mass and volume
  • Describe the forces that act on a completely or partially submerged object
  • Explain how an object that is more dense than water can be kept afloat by placing it on an object that is less dense than water.

Type: Virtual Manipulative

Understanding solutions:

•Use pictures and proportional reasoning to explain changes in concentration
•Draw what happens at the molecular level when compounds dissolve in water
•Identify if a compound is a salt or sugar by macroscopic observations or microscopic representations.
•Explain how using combinations of solutes changes solution characteristics or not.
•Use observations to explain ways concentration of a solute can change.
•Describe ways the formula, macroscopic observations, or microscopic representations of a compound indicates if the bonding is ionic or covalent.

Type: Virtual Manipulative

PhET Gas Properties:

This virtual manipulative allows you to investigate various aspects of gases through virtual experimentation. From the site: Pump gas molecules to a box and see what happens as you change the volume, add or remove heat, change gravity, and more (open the box, change the molecular weight of the molecule). Measure the temperature and pressure, and discover how the properties of the gas vary in relation to each other.

Type: Virtual Manipulative