# SC.4.P.11.1

Recognize that heat flows from a hot object to a cold object and that heat flow may cause materials to change temperature.
General Information
Subject Area: Science
Body of Knowledge: Physical Science
Idea: Level 1: Recall
Big Idea: Energy Transfer and Transformations - A. Waves involve a transfer of energy without a transfer of matter.

B. Water and sound waves transfer energy through a material.

C. Light waves can travel through a vacuum and through matter.

Clarification for grades 5-8: The target understanding for Big Idea 11: Energy Transfer and Transformations, is the Law of Conservation of Energy: Energy is conserved as it transfers from one object to another and from one form to another.

Date of Last Rating: 05/08
Status: State Board Approved
Assessed: Yes

## Related Courses

This benchmark is part of these courses.
5020050: Science - Grade Four (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))
7720050: Access Science Grade 4 (Specifically in versions: 2014 - 2015, 2015 - 2018, 2018 - 2023, 2023 and beyond (current))

## Related Access Points

Alternate version of this benchmark for students with significant cognitive disabilities.
SC.4.P.11.In.1: Identify that a hot object will make a cold object warm when they touch.
SC.4.P.11.Su.1: Recognize that a hot object can make a cold object warm when they touch.
SC.4.P.11.Pa.1: Recognize a temperature change from cold to warm.

## Related Resources

Vetted resources educators can use to teach the concepts and skills in this benchmark.

## Lesson Plans

Just Right Goldilocks’ Café: Temperature & Turbidity:

This is lesson 3 of 3 in the Goldilocks’ Café Just Right unit. This lesson focuses on systematic investigation on getting a cup of coffee to be the “just right” temperature and turbidity level. Students will use both the temperature probe and turbidity sensor and code using ScratchX during their investigation.

Type: Lesson Plan

Just Right Goldilocks’ Café: Turbidity:

This is lesson 2 of 3 in the Just Right Goldilocks’ Café unit. This lesson focuses on systematic investigation on getting a cup of coffee to be the “just right” level of turbidity. Students will use turbidity sensors and code using ScratchX during their investigation.

Type: Lesson Plan

Just Right Goldilocks’ Café: Temperature:

This is lesson 1 of 3 in the Just Right Goldilocks’ Café unit. This lesson focuses on systematic investigation on getting a cup of coffee to be the “just right” temperature. Students will use temperature probes and code using ScratchX during their investigation.

Type: Lesson Plan

Heating Up the Neighborhood:

This Engineering Design Challenge is intended to help students apply the concepts of heat insulators as they build a model house and test different materials to use as insulators, stopping the warm air from escaping and keeping the cool air out. Students will also have an opportunity to use technology in their exploration of heat energy.

Type: Lesson Plan

Lizard Lights:

Students will use a real-world problem solving situation to determine the best types of light bulbs to maintain an appropriate environment for a captive lizard.

Type: Lesson Plan

Thrift Town Melt-Down - Let's Cool up!:

During this activity, students will look at data from a fictional town, Thrift Town and develop a strategy of choosing which material would be the best to help insulate an ice cream container. The students will utilize higher order thinking skills, as well as deduction to find a solution.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

Type: Lesson Plan

Keep it Cool –an Engineering Design Challenge:

This Engineering Design Challenge is intended to help fourth grade students apply the concepts of the flow of heat from a hot object to a cold object and that heat flow may cause objects to change temperature. It is not intended as an initial introduction to this benchmark.

Type: Lesson Plan

Stop Heat From Escaping:

In this activity, students act as engineers to determine which type of insulation would conserve the most energy.

Type: Lesson Plan

## Teaching Idea

Cool It!:

As a result of this activity, students will be able to observe that materials transfer heat at different rates.

Type: Teaching Idea

## STEM Lessons - Model Eliciting Activity

Lizard Lights:

Students will use a real-world problem solving situation to determine the best types of light bulbs to maintain an appropriate environment for a captive lizard.

Thrift Town Melt-Down - Let's Cool up!:

During this activity, students will look at data from a fictional town, Thrift Town and develop a strategy of choosing which material would be the best to help insulate an ice cream container. The students will utilize higher order thinking skills, as well as deduction to find a solution.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

## Student Resources

Vetted resources students can use to learn the concepts and skills in this benchmark.

## Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this benchmark.