LAFS.4.SL.1.1Archived Standard

Engage effectively in a range of collaborative discussions (one-on-one, in groups, and teacher-led) with diverse partners on grade 4 topics and texts, building on others’ ideas and expressing their own clearly.
  1. Come to discussions prepared, having read or studied required material; explicitly draw on that preparation and other information known about the topic to explore ideas under discussion.
  2. Follow agreed-upon rules for discussions and carry out assigned roles.
  3. Pose and respond to specific questions to clarify or follow up on information, and make comments that contribute to the discussion and link to the remarks of others.
  4. Review the key ideas expressed and explain their own ideas and understanding in light of the discussion.
General Information
Subject Area: English Language Arts
Grade: 4
Strand: Standards for Speaking and Listening
Idea: Level 3: Strategic Thinking & Complex Reasoning
Date Adopted or Revised: 12/10
Date of Last Rating: 02/14
Status: State Board Approved - Archived

Related Courses

This benchmark is part of these courses.
5012060: Grade Four Mathematics (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
5020050: Science - Grade Four (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
5010010: English for Speakers of Other Languages-Elementary (Specifically in versions: 2014 - 2015, 2015 - 2022 (course terminated))
5010020: Basic Skills in Reading-K-2 (Specifically in versions: 2014 - 2015, 2015 - 2021, 2021 - 2024, 2024 and beyond (current))
5010030: Functional Basic Skills in Communications-Elementary (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
5013010: Elementary Chorus (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 - 2025 (current), 2025 and beyond)
5013020: Elementary Band (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 - 2025 (current), 2025 and beyond)
5013030: Elementary Orchestra (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 - 2025 (current), 2025 and beyond)
5021060: Social Studies Grade 4 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2023, 2023 - 2024, 2024 and beyond (current))
5010045: Language Arts - Grade Four (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
7712050: Access Mathematics Grade 4 (Specifically in versions: 2014 - 2015, 2015 - 2018, 2018 - 2022, 2022 and beyond)
7720050: Access Science Grade 4 (Specifically in versions: 2014 - 2015, 2015 - 2018, 2018 - 2023, 2023 and beyond)
7710015: Access Language Arts - Grade 4 (Specifically in versions: 2014 - 2015, 2015 - 2018, 2018 - 2022, 2022 and beyond)
7721015: Access Social Studies - Grade 4 (Specifically in versions: 2014 - 2015, 2015 - 2018, 2018 - 2023, 2023 and beyond)
5003050: Dance-Intermediate 2 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
5001050: Art – Intermediate 2 (Specifically in versions: 2014 - 2015, 2015 - 2019, 2019 - 2022, 2022 - 2024, 2024 - 2025 (current), 2025 and beyond)
5013100: Music - Intermediate 2 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 - 2025 (current), 2025 and beyond)
5013035: Elementary Special Ensemble (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 - 2025 (current), 2025 and beyond)
5011040: Library Skills/Information Literacy 4 (Specifically in versions: 2016 - 2022, 2022 - 2023, 2023 - 2024, 2024 and beyond (current))
5002020: Introduction to Computer Science 2 (Specifically in versions: 2016 - 2022, 2022 - 2024, 2024 - 2025 (course terminated))
5004240: Theatre Intermediate 2 (Specifically in versions: 2020 - 2022, 2022 - 2024, 2024 and beyond (current))
5010104: Introduction to Debate Grade 4 (Specifically in versions: 2020 - 2022, 2022 - 2024, 2024 and beyond (current))

Related Access Points

Alternate version of this benchmark for students with significant cognitive disabilities.

Related Resources

Vetted resources educators can use to teach the concepts and skills in this benchmark.

Lesson Plans

Planet Hoppers, Inc: A Space Suit Design Company:

Students are asked to evaluate several space suit designs and select the best design based on given data. Students work in collaborative groups to develop a procedure for selecting the best design and share their ideas with the rest of the class. A twist is introduced and the groups are challenged to test the validity of their procedure.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Type: Lesson Plan

Slither Not in the Everglades! Python MEA:

This MEA will ask students to work in teams to help their client, The Florida Fish and Wildlife Conservation Commission, to decide which Burmese python traps manufacturing company to buy traps from. The traps will be placed along the Florida Keys and the Everglades to help prevent the growth of invasive Burmese Python population. The students will implement their knowledge of how plants, animals, and humans impact the environment, use mathematical and analytical problem-solving strategies, and be able report their finding in an organized, descriptive manner.

Type: Lesson Plan

Best Stuffy Ever:

In this Model-Eliciting Activity (MEA), the students will learn about comparing the volume and the capacity of an item such as a bigger than normal stuffy. Each stuffy will be stuffed with the same type of object (tennis balls) to see which holds more. Through various readings, discussions, and activities, the students will determine which stuffy can hold the most inside. They will do this by analyzing a set of data with a set of criteria given to them by a client.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx

Type: Lesson Plan

Best Graduation Venue:

This MEA asks fourth grade students to collaborate with their classmates to solve a problem. They have to use their previous knowledge of the area formula and apply it to a real world problem using a given data set. They will also be asked to reevaluate their solutions when additional data is added.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx

Type: Lesson Plan

The Dock at Lake Wonder MEA:

In this Model Eliciting Activity, MEA, students will be asked to rank and choose from the potential docks the Lake Wonder Camp could purchase before next summer based on the data given. In the process, students will need to find area and perimeter as part of their criteria for ranking. The data provided is: dock dimensions, price per square foot for materials, warranty, and material quality. In the twist, students will be asked to calculate the cost of adding a safety bumper around each dock (after finding the perimeter) and calculate the total cost of each dock with the price of the safety bumper added. They must also stay within a $5,000 budget. Students must decide how to change their procedure with the new information.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

Type: Lesson Plan

Mastering Minerals!:

In this Model-Eliciting Activity (MEA), students will review data and rank minerals from best to worst in terms of mineral properties, to help a mineral jeweler decide on the best mineral to use to make a necklace. Students will consider hardness, luster, color, cleavage and safety by analyzing the given charts which include these data by mineral. Students will work as a group and create a model for ranking the minerals.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx

Type: Lesson Plan

Fertilizers in Florida:

Growing Green, Inc. is planning to expand their business into Florida. The client has specific criteria for selecting a good location to set up their new fertilizer manufacturing plant. This project will familiarize students with some of Florida's natural resources (with a great emphasis on phosphate) and will present students with opportunities to interpret different types of maps.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx

Type: Lesson Plan

Park Planning:

Students are asked to plan a playground for a new park within a given budget and area limit. They will analyze the best use of playground equipment using a data table of area requirements and cost. Students will convert units within a single measurement system, calculate the area of a rectangle, and perform addition/subtraction calculations involving money using decimal notation.

Type: Lesson Plan

Dance by the Light of the Moon:

Professional Partiers, Inc. is having a difficult time setting a date for a client's Halloween party. The client has specific criteria they like would to have included in deciding on a good date. This project will familiarize students with the phases of the moon. It allows students an opportunity to interpret data from charts and collaborate with one another to provide a thoughtful written response for the company.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx

Type: Lesson Plan

Aesop's Fable "The Lost Wig":

This lesson on Aesop's Fable "The Lost Wig" will provide students the opportunity to share and discuss their ideas of the fable’s theme. Students will work together in cooperative pairs to determine the theme "The Lost Wig." They will also have the opportunity to add on to the ending of "The Lost Wig" to enhance the theme.

Type: Lesson Plan

Characterization in Bud, Not Buddy:

In this lesson, students will read an excertpt from Bud, Not Buddy by Christopher Paul Curtis to analyze story elements and examine characters' actions and motivations.

Type: Lesson Plan

Birthday Balloon Planner:

In this Model Eliciting Activity, MEA, students will develop a procedure for choosing a balloon company for a birthday party and rank them from best to worst.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

Type: Lesson Plan

Cupcake Shop Creator:

In this Model Eliciting Activity, MEA, students will become architects to determine the best layout for a new cupcake shop coming to town. Students will use area and perimeter to assist in presenting the best layout of the store. The factors that the students will need to consider are: kitchen space, front counter space, a bathroom, and a wall to display and sell merchandise.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

Type: Lesson Plan

Turn Up the Heat!:

In this Model-Eliciting Activity (MEA), students will work in groups to develop a procedure to rank which company would offer the best pot holders. Students will consider factors such materials, heat resistance, durability, Physical properties ( shape and color) and appearance to help pick the best option. Students will apply their knowledge of how heat transfers and understanding of materials that don't conduct heat energy to help evaluate the companies.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx

Type: Lesson Plan

Help Me Build a Roller Coaster:

Students will evaluate different factors for building the right roller coaster.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

Type: Lesson Plan

Cell Phone Inquiry:

Students will determine what cell phone would be the best phone for their teacher to purchase for science class. Factors to consider are price, touch screen, camera, voice command, weight and display size. Students will need to compare decimals to determine how to order and rank the phone brands.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Type: Lesson Plan

Tennis Lessons:

This MEA asks students to take on the job of a tennis pro and decide which factors are most important in choosing a facility to take tennis lessons. Students will perform math calculations, create a two-column table for hours and minutes, develop a procedure to rank facilities, and provide written feedback through letters to a parent whose child needs group tennis lessons and writes letters to ask for advice. They will rank their choices from "best to worst" tennis lesson facilities. Students will provide a detailed written explanation for how they decided to rank factors and their solution for rating tennis lesson facilities.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx

Type: Lesson Plan

Walk This Way:

Students will be asked to rank the different floor tiles for the playrooms in activity centers throughout community parks. They will need to take certain factors into consideration when making their rankings. They will also need to calculate the costs of installing the floor tiles using the given measurement of the playroom and the floor tiles. The "twist" will be that the client now needs to include a storage room for some of the playroom's equipment. They will need to decide if to use the same floor tile or different from the playroom and the additional cost of the storage closet. After, they will add the total costs of the playroom and the storage closet. They will report their findings and reasons by writing letters to the client.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

Type: Lesson Plan

Best Baseball Player?:

In this Model Eliciting Activity, MEA, students will use data to create a procedure for ranking baseball players and determine which baseball player they think is the best hitter using the procedure.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

Type: Lesson Plan

Celebrity Floor Plan Frenzy:

Students will help an architect find the area of each room in a celebrity home and then determine the best location to build the home based on qualitative data about the locations.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

Type: Lesson Plan

Pickle Pick:

This Model Eliciting Activity (MEA) asks students to develop a procedure to select a pickle brand for a sandwich shop. Students will need to consider appearance, texture, price, flavor, length of shelf life, and estimating shipping costs. In the second portion of the problem statement, the students will need to trade off what they have previously considered and give more worth to the estimated shipping costs, while adding three more brands for consideration. The students will complete a culminating activity of making a commercial to advertise their selected brand. Student will need to work together and use the standard conventions of writing to write and perform their commercial for the other groups.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

Type: Lesson Plan

Fish Ahoy Fish:

Students will work in groups to assist a client in purchasing different fish for a fish pond. From a data table, they will need to decide which type of fish and how many fish to purchase according to the size of the each pond. After, they will need to revisit a revised data table to make different selection of fish and calculate costs for the purchase of the fish.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

Type: Lesson Plan

BUGS...Food Of The Future?:

In this Model-Eliciting Activity (MEA), students will work in groups to develop a procedure to rank which insect would be the best bug to farm for human consumption in the USA. Students will consider factors such as nutritional value, length of insect life cycle, stage of life cycle the insect can be served, notes from chefs, customer tasting notes, level of difficulty to farm, and price. This MEA allows students to apply scientific content, metamorphosis, in a real world application, while developing high-level problem solving skills.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx

Type: Lesson Plan

Wind at Work: Wind as a Renewable Resource:

This is an Engineering Design Project that builds upon the understanding of wind as a natural resource. It is applying content knowledge and is not intended as an initial introduction to the benchmarks.

Type: Lesson Plan

Dissect It!:

After dissecting a flower(s), the students will be able to identify the parts necessary for pollination, or reproduction of flowering plants. They will also make comparisons and find patterns in nature, leading them to the understanding of the processes of sexual reproduction in flowering plants, including pollination and fertilization (seed production).

Type: Lesson Plan

Planning Creative Drama:

This lesson introduces students to a creative and engaging way to understand story structure and elements of plot by allowing the students to write and act out a play. Students make selections from a provided list featuring various settings, characters, and conflicts and build their creative plays using a ready-made story feature template.

Type: Lesson Plan

Did It Change?:

Through demonstrations and lab/investigate rotations, students will explore physical and chemical changes.

Type: Lesson Plan

Rollercoaster Investigations:

This activity will allow students to explore the motion and speed of an object. While constructing a rollercoaster and using the Scientific Method, students will create their own question and then investigate it, finding out whether the speed of an object is affected by the track it follows.

Type: Lesson Plan

Wind Sculptures - An Engineering Design Challenge:

This Engineering Design Challenge is intended to help students apply the concept of how moving air is a source of energy and can be used to move things. It is not intended as an initial introduction to this benchmark.

Type: Lesson Plan

Banana County Public School-Painters MEA:

This Model Eliciting Activity (MEA) is written at a 4th grade level.

This activity allows students to think critically using information provided. Students will write a procedure on how they determined which painting company would be suitable for the client.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Type: Lesson Plan

Cube Cooler—An Engineering Design Challenge:

This Engineering Design Challenge is intended to help students apply the concepts of heat insulators as they build cube-coolers to slow the melting rate of ice. It is not intended as an initial introduction to this benchmark.

Type: Lesson Plan

Sunshine Power Company MEA:

This Model Eliciting Activity (MEA) is written at a 4th grade level. In this open-ended problem, students must consider how to rank wind companies based on factors like windiness, noise levels, and power output. In teams, students determine their procedures and write letters back to the client.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Type: Lesson Plan

Cemented Together:

In this activity the students will create their own sedimentary rock using glue and various pieces of sediments found throughout the school yard. The students will create a model of a sedimentary rock and describe how they would identify a sedimentary rock in the real world.

Type: Lesson Plan

Lotsa Lotion Lab's Sunscreens:

Lotsa Lotion Labs requests the help of your team to rank a group of sunscreens, explain the process and justify how you chose which is 'best.' An additional hands-on lesson investigating solar energy and sunscreens is included as an extension activity.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

Type: Lesson Plan

Recycle This!:

In this Model-Eliciting Activity (MEA), students will learn about recycling renewable and nonrenewable resources while completing a model eliciting activity in which they help Sunshine School District to decide which material to start their recycling program with.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx

Type: Lesson Plan

To Flow or Blow: Which One is Best for Here?:

In this lesson, 4th grade students will use web-based articles and maps to look at current and potential air (wind) and water (hydro)power plants for their, or a teacher-given, local area. Students will present an argument for which type of renewable energy plant they believe would be best citing evidence from text(s) and/or map(s). Students may work and/or write in groups or individually. Access points are included for this lesson.

Type: Lesson Plan

Teaching Ideas

Sea Turtle Summit-SeaWorld Classroom Activity:

In this activity, the students will take a hypothetical environmental situation and research appropriate literature to determine factual information and logicially argue a particular point of view.

Type: Teaching Idea

Wildlife Reserve-SeaWorld Classroom Activity:

In this activity, the students will design a protected environment for an endangered animal that encourages the animal's natural behaviors and meets its physical requirements. Students will explain to their classmates why the protected environment is essential for the endangered animal.

Type: Teaching Idea

Unit/Lesson Sequence

Ruby Bridges: A Simple Act of Courage:

In this unit, students will learn about the Civil Rights Movement through the perspective of Ruby Bridges, a young girl caught in the struggle for equality during this time. Vocabulary strategies, slideshows, graphic organizers, and text-based questions are all included to help students compare/contrast Ruby's world with their own.

Type: Unit/Lesson Sequence

STEM Lessons - Model Eliciting Activity

Banana County Public School-Painters MEA:

This Model Eliciting Activity (MEA) is written at a 4th grade level.

This activity allows students to think critically using information provided. Students will write a procedure on how they determined which painting company would be suitable for the client.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Best Baseball Player?:

In this Model Eliciting Activity, MEA, students will use data to create a procedure for ranking baseball players and determine which baseball player they think is the best hitter using the procedure.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

Best Graduation Venue:

This MEA asks fourth grade students to collaborate with their classmates to solve a problem. They have to use their previous knowledge of the area formula and apply it to a real world problem using a given data set. They will also be asked to reevaluate their solutions when additional data is added.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx

Best Stuffy Ever:

In this Model-Eliciting Activity (MEA), the students will learn about comparing the volume and the capacity of an item such as a bigger than normal stuffy. Each stuffy will be stuffed with the same type of object (tennis balls) to see which holds more. Through various readings, discussions, and activities, the students will determine which stuffy can hold the most inside. They will do this by analyzing a set of data with a set of criteria given to them by a client.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx

Birthday Balloon Planner:

In this Model Eliciting Activity, MEA, students will develop a procedure for choosing a balloon company for a birthday party and rank them from best to worst.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

BUGS...Food Of The Future?:

In this Model-Eliciting Activity (MEA), students will work in groups to develop a procedure to rank which insect would be the best bug to farm for human consumption in the USA. Students will consider factors such as nutritional value, length of insect life cycle, stage of life cycle the insect can be served, notes from chefs, customer tasting notes, level of difficulty to farm, and price. This MEA allows students to apply scientific content, metamorphosis, in a real world application, while developing high-level problem solving skills.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx

Celebrity Floor Plan Frenzy:

Students will help an architect find the area of each room in a celebrity home and then determine the best location to build the home based on qualitative data about the locations.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

Cell Phone Inquiry:

Students will determine what cell phone would be the best phone for their teacher to purchase for science class. Factors to consider are price, touch screen, camera, voice command, weight and display size. Students will need to compare decimals to determine how to order and rank the phone brands.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Cupcake Shop Creator:

In this Model Eliciting Activity, MEA, students will become architects to determine the best layout for a new cupcake shop coming to town. Students will use area and perimeter to assist in presenting the best layout of the store. The factors that the students will need to consider are: kitchen space, front counter space, a bathroom, and a wall to display and sell merchandise.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

Dance by the Light of the Moon:

Professional Partiers, Inc. is having a difficult time setting a date for a client's Halloween party. The client has specific criteria they like would to have included in deciding on a good date. This project will familiarize students with the phases of the moon. It allows students an opportunity to interpret data from charts and collaborate with one another to provide a thoughtful written response for the company.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx

Fertilizers in Florida:

Growing Green, Inc. is planning to expand their business into Florida. The client has specific criteria for selecting a good location to set up their new fertilizer manufacturing plant. This project will familiarize students with some of Florida's natural resources (with a great emphasis on phosphate) and will present students with opportunities to interpret different types of maps.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx

Fish Ahoy Fish:

Students will work in groups to assist a client in purchasing different fish for a fish pond. From a data table, they will need to decide which type of fish and how many fish to purchase according to the size of the each pond. After, they will need to revisit a revised data table to make different selection of fish and calculate costs for the purchase of the fish.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

Help Me Build a Roller Coaster:

Students will evaluate different factors for building the right roller coaster.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

Lotsa Lotion Lab's Sunscreens:

Lotsa Lotion Labs requests the help of your team to rank a group of sunscreens, explain the process and justify how you chose which is 'best.' An additional hands-on lesson investigating solar energy and sunscreens is included as an extension activity.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

Mastering Minerals!:

In this Model-Eliciting Activity (MEA), students will review data and rank minerals from best to worst in terms of mineral properties, to help a mineral jeweler decide on the best mineral to use to make a necklace. Students will consider hardness, luster, color, cleavage and safety by analyzing the given charts which include these data by mineral. Students will work as a group and create a model for ranking the minerals.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx

Park Planning:

Students are asked to plan a playground for a new park within a given budget and area limit. They will analyze the best use of playground equipment using a data table of area requirements and cost. Students will convert units within a single measurement system, calculate the area of a rectangle, and perform addition/subtraction calculations involving money using decimal notation.

Pickle Pick:

This Model Eliciting Activity (MEA) asks students to develop a procedure to select a pickle brand for a sandwich shop. Students will need to consider appearance, texture, price, flavor, length of shelf life, and estimating shipping costs. In the second portion of the problem statement, the students will need to trade off what they have previously considered and give more worth to the estimated shipping costs, while adding three more brands for consideration. The students will complete a culminating activity of making a commercial to advertise their selected brand. Student will need to work together and use the standard conventions of writing to write and perform their commercial for the other groups.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

Planet Hoppers, Inc: A Space Suit Design Company:

Students are asked to evaluate several space suit designs and select the best design based on given data. Students work in collaborative groups to develop a procedure for selecting the best design and share their ideas with the rest of the class. A twist is introduced and the groups are challenged to test the validity of their procedure.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Recycle This!:

In this Model-Eliciting Activity (MEA), students will learn about recycling renewable and nonrenewable resources while completing a model eliciting activity in which they help Sunshine School District to decide which material to start their recycling program with.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx

Slither Not in the Everglades! Python MEA:

This MEA will ask students to work in teams to help their client, The Florida Fish and Wildlife Conservation Commission, to decide which Burmese python traps manufacturing company to buy traps from. The traps will be placed along the Florida Keys and the Everglades to help prevent the growth of invasive Burmese Python population. The students will implement their knowledge of how plants, animals, and humans impact the environment, use mathematical and analytical problem-solving strategies, and be able report their finding in an organized, descriptive manner.

Sunshine Power Company MEA:

This Model Eliciting Activity (MEA) is written at a 4th grade level. In this open-ended problem, students must consider how to rank wind companies based on factors like windiness, noise levels, and power output. In teams, students determine their procedures and write letters back to the client.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Tennis Lessons:

This MEA asks students to take on the job of a tennis pro and decide which factors are most important in choosing a facility to take tennis lessons. Students will perform math calculations, create a two-column table for hours and minutes, develop a procedure to rank facilities, and provide written feedback through letters to a parent whose child needs group tennis lessons and writes letters to ask for advice. They will rank their choices from "best to worst" tennis lesson facilities. Students will provide a detailed written explanation for how they decided to rank factors and their solution for rating tennis lesson facilities.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx

The Dock at Lake Wonder MEA:

In this Model Eliciting Activity, MEA, students will be asked to rank and choose from the potential docks the Lake Wonder Camp could purchase before next summer based on the data given. In the process, students will need to find area and perimeter as part of their criteria for ranking. The data provided is: dock dimensions, price per square foot for materials, warranty, and material quality. In the twist, students will be asked to calculate the cost of adding a safety bumper around each dock (after finding the perimeter) and calculate the total cost of each dock with the price of the safety bumper added. They must also stay within a $5,000 budget. Students must decide how to change their procedure with the new information.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

Turn Up the Heat!:

In this Model-Eliciting Activity (MEA), students will work in groups to develop a procedure to rank which company would offer the best pot holders. Students will consider factors such materials, heat resistance, durability, Physical properties ( shape and color) and appearance to help pick the best option. Students will apply their knowledge of how heat transfers and understanding of materials that don't conduct heat energy to help evaluate the companies.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx

Walk This Way:

Students will be asked to rank the different floor tiles for the playrooms in activity centers throughout community parks. They will need to take certain factors into consideration when making their rankings. They will also need to calculate the costs of installing the floor tiles using the given measurement of the playroom and the floor tiles. The "twist" will be that the client now needs to include a storage room for some of the playroom's equipment. They will need to decide if to use the same floor tile or different from the playroom and the additional cost of the storage closet. After, they will add the total costs of the playroom and the storage closet. They will report their findings and reasons by writing letters to the client.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

Student Resources

Vetted resources students can use to learn the concepts and skills in this benchmark.

Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this benchmark.

Teaching Idea

Wildlife Reserve-SeaWorld Classroom Activity:

In this activity, the students will design a protected environment for an endangered animal that encourages the animal's natural behaviors and meets its physical requirements. Students will explain to their classmates why the protected environment is essential for the endangered animal.

Type: Teaching Idea