Standard 9: Write and solve a system of two- and three-variable equations and inequalities that describe quantities or relationships.

General Information
Number: MA.912.AR.9
Title: Write and solve a system of two- and three-variable equations and inequalities that describe quantities or relationships.
Type: Standard
Subject: Mathematics (B.E.S.T.)
Grade: 912
Strand: Algebraic Reasoning

Related Benchmarks

This cluster includes the following benchmarks.

Related Access Points

This cluster includes the following access points.

Access Points

MA.912.AR.9.AP.1
Given an algebraic or graphical system of two-variable linear equations, select the solution to the system of equations.
MA.912.AR.9.AP.2
Solve a system consisting of a two-variable linear equation and a quadratic equation algebraically or graphically.
MA.912.AR.9.AP.3
Solve a system consisting of two-variable linear or quadratic equations algebraically or graphically.
MA.912.AR.9.AP.4
Select the graph of the solution set of a system of two-variable linear inequalities.
MA.912.AR.9.AP.5
Select the graph of the solution set of a system of two-variable inequalities.
MA.912.AR.9.AP.6
Given a real-world context, as systems of linear equations or inequalities with identified constraints, select a solution as a viable or non-viable option.
MA.912.AR.9.AP.7
Given a real-world context, as systems of linear and non-linear equations or inequalities with identified constraints, select a solution as a viable or non-viable option.

Related Resources

Vetted resources educators can use to teach the concepts and skills in this topic.

Formative Assessments

Graphing a Step Function:

Students are asked to graph a step function, state the domain of the function, and name any intercepts.

Type: Formative Assessment

The New School:

Students are asked to represent constraints using inequalities given in a problem context.

Type: Formative Assessment

Sugar and Protein:

Students are asked to model a problem involving constraints using inequalities.

Type: Formative Assessment

Using Technology:

Students are asked to use technology (e.g., spreadsheet, graphing calculator, or dynamic geometry software) to estimate the solutions of the equation f(x) = g(x) for given functions f and g.

Type: Formative Assessment

How Many Solutions?:

Students are asked to determine the number of solutions of each of four systems of linear equations without solving the systems of equations.

Type: Formative Assessment

Graphs and Solutions - 2:

Students are asked to find the solution(s) of the equation f(x) = g(x) given the graphs of f and g and explain their reasoning.

Type: Formative Assessment

Using Tables:

Students are asked to find solutions of the equation f(x) = g(x) for two given functions, f and g, by constructing a table of values.

Type: Formative Assessment

Graph a System of Inequalities:

Students are asked to graph a system of two linear inequalities.

Type: Formative Assessment

Which Graph?:

Students are asked to select the correct graph of the solution region of a given system of two linear inequalities.

Type: Formative Assessment

Graphs and Solutions -1:

Students are asked to explain why the x-coordinate of the intersection of two functions, f and g, is a solution of the equation f(x) = g(x).

Type: Formative Assessment

Airport Parking:

Students are given a graph and a verbal description of a function and are asked to describe its domain.

Type: Formative Assessment

Writing System Equations:

Students are given word problems and asked to write a pair of simultaneous linear equations that could be used to solve them.

Type: Formative Assessment

System Solutions:

Students are asked to solve a word problem by solving a system of linear equations.

Type: Formative Assessment

Solving Systems of Linear Equations:

Students are asked to solve three systems of linear equations algebraically.

Type: Formative Assessment

Apples and Peaches:

Students are asked to solve a system of equations with rational solutions either algebraically or by graphing and are asked to justify the choice of method.

Type: Formative Assessment

Solving a System of Equations - 1:

Students are asked to solve a system of equations both algebraically and graphically.

Type: Formative Assessment

Solving a System of Equations - 3:

Students are asked to solve a system of equations both algebraically and graphically.

Type: Formative Assessment

Solving a System of Equations - 2:

Students are asked to solve a system of equations both algebraically and graphically.

Type: Formative Assessment

Lesson Plans

How Shady Are You?:

This lesson allows students to graph systems of linear inequalities with two variables and view three possible types of solutions.

Type: Lesson Plan

Take Me Out to the Ball Game!:

Students will research ticket sales at five different stadiums. They will then select two stadiums and develop a word problem. They will then solve to show that there is one solution and write and explanation why. This lesson is a project-based task that students can use to show their understanding of solving systems of equations.

Type: Lesson Plan

Changes are Coming to System of Equations:

Use as a follow up lesson to solving systems of equations graphically. Students will explore graphs of systems to see how manipulating the equations affects the solutions (if at all).

Type: Lesson Plan

Space Equations:

In this lesson, students model the orbit of a satellite and the trajectory of a missile with a system of equations. They solve the equations both graphically and algebraically.

Type: Lesson Plan

Solving Systems of Inequalities:

Students will learn to graph a system of inequalities and identify points in the solution set. This lesson aligns with the Mathematics Formative Assessment System (MFAS) Task Graph a System of Inequalities (CPALMS Resource #60567). In this lesson, students with similar instructional needs are grouped according to MFAS rubric levels: Getting Started, Moving Forward, Almost There, and Got It. Students in each group complete an exercise designed to move them toward a better understanding of solutions of systems of inequalities and their graphs.

Type: Lesson Plan

A Scheme for Solving Systems:

Students will graph systems of linear equations in slope-intercept form to find the solution to the system. Students will practice with systems that have one solution, no solution, and all solutions. Because the lesson builds upon a group activity, the students have an easy flow into the lesson and the progression of the lesson is a smooth transition into solving systems algebraically.

Type: Lesson Plan

Solving Systems of Equations by Substitution:

In this lesson, students will learn how to solve systems of equations using substitution. Students will have the opportunity for small group and whole class discussion related to using substitution.

Type: Lesson Plan

Don't Blow the Budget!:

Students use systems of equations and inequalities to solve real world budgeting problems involving two variables.

Type: Lesson Plan

Systems of the Linear Round Table:

This lesson is a follow-up review of systems of linear equations. Students will complete a group activity called Simultaneous Round Table to solve given systems of equations. Students will solve by graphing, elimination, and substitution.  Each student will also perform error analysis on the work from their peers, which will allow them to help each other to correct those mistakes. Class will use data from error analysis to create a plan of action to decrease errors in their work.  Students will discuss the concepts and analyze problems with each other. These concepts were taught in an earlier lesson. This lesson will also help students identify common mistakes and find solutions to remedy them.

Type: Lesson Plan

Graphing vs. Substitution. Which would you choose?:

Students will solve multiple systems of equations using two methods: graphing and substitution. This will help students to make a connection between the two methods and realize that they will indeed get the same solution graphically and algebraically.  Students will compare the two methods and think about ways to decide which method to use for a particular problem. This lesson connects prior instruction on solving systems of equations graphically with using algebraic methods to solve systems of equations.

Type: Lesson Plan

My Candles are MELTING!:

In this lesson, students will apply their knowledge to model a real-world linear situation in a variety of ways. They will analyze a situation in which 2 candles burn at different rates. They will create a table of values, determine a linear equation, and graph each to determine if and when the candles will ever be the same height. They will also determine the domain and range of their functions and determine whether there are constraints on their functions.

Type: Lesson Plan

Exploring Systems with Piggies, Pizzas and Phones:

Students write and solve linear equations from real-life situations. 

Type: Lesson Plan

Original Student Tutorials

Solving Systems of Linear Equations Part 6: Writing Systems from Context:

Learn how to create systems of linear equations to represent contextual situations in this interactive tutorial.

This part 6 in a 7-part series. Click below to explore the other tutorials in the series. 

Type: Original Student Tutorial

Solving Systems of Linear Equations Part 5: Connecting Algebraic Methods to Graphing:

Learn to solve systems of linear equations by connecting algebraic and graphing methods in this interactive tutorial.

This part 5 in a 7-part series. Click below to explore the other tutorials in the series. 

Type: Original Student Tutorial

Solving Systems of Linear Equations Part 4: Advanced Elimination:

Learn to solve systems of linear equations using advanced elimination in this interactive tutorial.

This part 4 in a 7-part series. Click below to explore the other tutorials in the series.

Type: Original Student Tutorial

Solving Systems of Linear Equations Part 3: Basic Elimination:

Learn to solve systems of linear equations using basic elimination in this interactive tutorial.

This part 3 in a 7-part series. Click below to explore the other tutorials in the series.

Part 1: Solving Systems of Linear Equations Part 1: Using Graphs

Part 2: Solving Systems of Linear Equations Part 2: Substitution

Part 4: Solving Systems of Linear Equations Part 4: Advanced Elimination (Coming soon)
Part 5: Solving Systems of Linear Equations Part 5: Connecting Algebraic Methods to Graphing (Coming soon)
Part 6: Solving Systems of Linear Equations Part 6: Writing Systems from Context (Coming soon)
Part 7: Solving Systems of Linear Equations Part 7: Word Problems (Coming soon)

Type: Original Student Tutorial

Solving Systems of Linear Equations Part 2: Substitution:

Learn to solve systems of linear equations using substitution in this interactive tutorial.

This part 2 in a 7-part series. Click below to explore the other tutorials in the series.

Part 1: Solving Systems of Linear Equations Part 1: Using Graphs

Part 3: Solving Systems of Linear Equations Part 3: Basic Elimination (Coming soon)

Part 4: Solving Systems of Linear Equations Part 4: Advanced Elimination (Coming soon)

Part 5: Solving Systems of Linear Equations Part 5: Connecting Algebraic Methods to Graphing (Coming soon)

Part 6: Solving Systems of Linear Equations Part 6: Writing Systems from Context (Coming soon)

Part 7: Solving Systems of Linear Equations Part 7: Word Problems (Coming soon)

Type: Original Student Tutorial

Solving Systems of Linear Equations Part 1: Using Graphs:

Learn how to solve systems of linear equations graphically in this interactive tutorial.

Type: Original Student Tutorial

Solving an Equation Using a Graph:

Follow as we learn why the x-coordinate of the point of intersection of two functions is the solution of the equation f(x) = g(x) in this interactive tutorial.

Type: Original Student Tutorial

Perspectives Video: Expert

Assessment of Past and Present Rates of Sea Level Change:

<p>In this video, Brad Rosenheim describes how Louisiana sediment cores are used to estimate sea level changes over the last 10,000 years.&nbsp;Video funded by&nbsp;NSF&nbsp;grant #:&nbsp;OCE-1502753.</p>

Type: Perspectives Video: Expert

Perspectives Video: Professional/Enthusiasts

Solving Systems of Equations, Oceans & Climate:

<p>Angela Dial discusses how she solves systems of equations to determine how the composition&nbsp;of ocean floor sediment has changed over 65 million years to help reveal more information&nbsp;regarding&nbsp;climate change.</p>

Type: Perspectives Video: Professional/Enthusiast

Determining Strengths of Shark Models based on Scatterplots and Regression:

Chip Cotton, fishery biologist, discusses his use of mathematical regression modeling and how well the data fits his models based on his deep sea shark research.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Hurricane Dennis & Failed Math Models:

What happens when math models go wrong in forecasting hurricanes?

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Gear Heads and Gear Ratios:

<p>Have a need for speed? Get out your spreadsheet! Race car drivers use algebraic formulas and spreadsheets to optimize car performance.</p>

Type: Perspectives Video: Professional/Enthusiast

Perspectives Video: Teaching Idea

Absolute Value Progression:

Unlock an effective teaching strategy for making connections with absolute values to graphing in this Teacher Perspectives video for educators.

Type: Perspectives Video: Teaching Idea

Problem-Solving Tasks

Centerpiece:

The purpose of this task is to use geometric and algebraic reasoning to model a real-life scenario. In particular, students are in several places (implicitly or explicitly) to reason as to when making approximations is reasonable and when to round, when to use equalities vs. inequalities, and the choice of units to work with (e.g., mm vs. cm).

Type: Problem-Solving Task

The Circle and The Line:

Although this task is fairly straightforward, it is worth noticing that it does not explicitly tell students to look for intersection points when they graph the circle and the line. Thus, in addition to assessing whether they can solve the system of equations, it is assessing a simple but important piece of conceptual understanding, namely the correspondence between intersection points of the two graphs and solutions of the system.

Type: Problem-Solving Task

Solution Sets:

The typical system of equations or inequalities problem gives the system and asks for the graph of the solution. This task turns the problem around. It gives a solution set and asks for the system that corresponds to it. The purpose of this task is to give students a chance to go beyond the typical problem and make the connections between points in the coordinate plane and solutions to inequalities and equations. Students have to focus on what the graph is showing. When you are describing a region, why does the inequality have to go one way or another? When you pick a point that clearly lies in a region, what has to be true about its coordinates so that it satisfies the associated system of inequalities?

Type: Problem-Solving Task

Quinoa Pasta 3:

This mathematical modeling task also illustrates making sense of a problem. Students are only told that there are two ingredients in the pasta and they have a picture of the box. It might even be better to just show the picture of the box, or to bring in the box and ask the students to pose the question themselves. The brand of pasta is quite commonly available at supermarkets or health food stores such as Whole Foods and even at Amazon.com. The box has the nutritional label and a reference to the website where the students can find other information about the ingredients

Type: Problem-Solving Task

Quinoa Pasta 2:

This mathematical modeling task also illustrates making sense of a problem. Students are given all the relevant information on the nutritional labels, but they have to figure out how to use this information. They have to come up with the idea that they can set up two equations in two unknowns to solve the problem.

Type: Problem-Solving Task

Pairs of Whole Numbers:

This task addresses solving systems of linear equations, and provides a simple example of a system with three equations and three unknown. Two (of many) methods for solving the system are presented. The first takes the given information to make three equations in three unknowns which can then be solved via algebraic manipulation to find the three numbers. The second solution is more clever, creating a single equation in three unknowns from the given information. This equation is then combined with the given information about the sums of pairs of numbers to deduce what the third number is. In reality, this solution is not simpler than the first: rather it sets up a slightly different set of equations which can be readily solved (the key being to take the sum of the three equations in the first solution). It provides a good opportunity for the instructor to show different methods for solving the same system of linear equations.

Type: Problem-Solving Task

Cash Box:

The given solutions for this task involve the creation and solving of a system of two equations and two unknowns, with the caveat that the context of the problem implies that we are interested only in non-negative integer solutions. Indeed, in the first solution, we must also restrict our attention to the case that one of the variables is further even. This aspect of the task is illustrative of the mathematical practice of modeling with mathematics, and crucial as the system has an integer solution for both situations, that is, whether we include the dollar on the floor in the cash box or not.

Type: Problem-Solving Task

Accurately weighing pennies II:

This task is a somewhat more complicated version of "Accurately weighing pennies I'' as a third equation is needed in order to solve part (a) explicitly. Instead, students have to combine the algebraic techniques with some additional problem-solving (numerical reasoning, informed guess-and-check, etc.) Part (b) is new to this task, as with only two types of pennies the weight of the collection determines how many pennies of each type are in the collection. This is no longer the case with three different weights but in this particular case, a collection of 50 is too small to show any ambiguity. This is part of the reason for part (c) of the question where the weight alone no longer determines which type of pennies are in the roll. This shows how important levels of accuracy in measurement are as the answer to part (b) could be different if we were to measure on a scale which is only accurate to the nearest tenth of a gram instead of to the nearest hundredth of a gram.

Type: Problem-Solving Task

Accurately weighing pennies I:

This problem involves solving a system of algebraic equations from a context: depending how the problem is interpreted, there may be one equation or two. The main work in parts (a) and (b) is in setting up the equation(s) appropriately. Question (c) is more subtle and it requires thinking carefully about the accuracy available in a particular measurement (weight). The first two parts of this task could be used for instructional or assessment purposes while the third part should strictly be implemented for instructional purposes.

Type: Problem-Solving Task

Quinoa Pasta 1:

This task asks students to find the amount of two ingredients in a pasta blend. The task provides all the information necessary to solve the problem by setting up two linear equations in two unknowns. This progression of tasks helps distinguish between 8th grade and high school expectations related to systems of linear equations.

Type: Problem-Solving Task

Cell Phone Plans:

This task presents a real-world problem requiring the students to write linear equations to model different cell phone plans. Looking at the graphs of the lines in the context of the cell phone plans allows the students to connect the meaning of the intersection points of two lines with the simultaneous solution of two linear equations. The students are required to find the solution algebraically to complete the task.

Type: Problem-Solving Task

Introduction to Linear Functions:

This task lets students explore the differences between linear and non-linear functions. By contrasting the two, it reinforces properties of linear functions.

Type: Problem-Solving Task

Selling Fuel Oil at a Loss:

The task is a modeling problem which ties in to financial decisions faced routinely by businesses, namely the balance between maintaining inventory and raising short-term capital for investment or re-investment in developing the business.

Type: Problem-Solving Task

Fixing the Furnace:

Students are asked to write equations to model the repair costs of three different companies and determine the conditions for which each company would be least expensive. This task can be used to both assess student understanding of systems of linear equations or to promote discussion and student thinking that would allow for a stronger solidification of these concepts. The solution can be determined in multiple ways, including either a graphical or algebraic approach.

Type: Problem-Solving Task

Tutorials

Example 3: Solving Systems by Elimination:

This video is an example of solving a system of linear equations by elimination where the system has infinite solutions.

Type: Tutorial

Solving Systems of Linear Equations with Elimination Example 1:

This video shows how to solve a system of equations through simple elimination.

Type: Tutorial

Inconsistent Systems of Equations:

This video explains how to identify systems of equations without a solution.

Type: Tutorial

Example 2: Solving Systems by Elimination:

This video shows how to solve systems of equations by elimination.

Type: Tutorial

Addition Elimination Example 1:

This video is an introduction to the elimination method of solving a system of equations.

Type: Tutorial

Systems of Equations Word Problems Example 1:

This video demonstrates solving a word problem by creating a system of linear equations that represents the situation and solving them using elimination.

Type: Tutorial

Graphing systems of equations:

In this tutorial, students will learn how to solve and graph a system of equations.

 

Type: Tutorial

Solving system of equations by graphing:

This tutorial shows students how to solve a system of linear equations by graphing the two equations on the same coordinate plane and identifying the intersection point. 

 

Type: Tutorial

Solving a system of equations by graphing:

This tutorial shows how to solve a system of equations by graphing. Students will see what a no solution system of equations looks like in a graph.

Type: Tutorial

Solving a system of equations using substitution:

This tutorial shows how to solve a system of equations using substitution.  

 

Type: Tutorial

Inconsistent, Dependent, and Independent Systems:

Systems of two linear equations in two variables can have a single solution, no solutions, or an infinite number of solutions. This video gives a great description of inconsistent, dependent, and independent systems. A consistent independent system of equations will have one solution. A consistent dependent system of equations will have infinite number of solutions, and an inconsistent system of equations will have no solution. This tutorial also provides information on how to distinguish a given system of linear equations as inconsistent, independent, or dependent system by looking at the slope and intercept.

Type: Tutorial

Solving Systems of Equations by Elimination:

Systems of two equations in x and y can be solved by adding the equations to create a new equation with one variable eliminated. This new equation can then be solved to find the value of the remaining variable. That value is then substituted into either equation to find the value of other variable.

Type: Tutorial

Solving Systems of Equations by Substitution:

A system of two equations in x and y can be solved by rearranging one equation to represent x in terms of y, and "substituting" this expression for x in the other equation. This creates an equation with only y which can then be solved to find y's value. This value can then be substituted into either equation to find the value of x.

Type: Tutorial

Video/Audio/Animations

Using Systems of Equations Versus One Equation:

When should a system of equations with multiple variables be used to solve an Algebra problem, instead of using a single equation with a single variable?

Type: Video/Audio/Animation

Why the Elimination Method Works:

This chapter presents a new look at the logic behind adding equations- the essential technique used when solving systems of equations by elimination.

Type: Video/Audio/Animation

Student Resources

Vetted resources students can use to learn the concepts and skills in this topic.

Original Student Tutorials

Solving Systems of Linear Equations Part 6: Writing Systems from Context:

Learn how to create systems of linear equations to represent contextual situations in this interactive tutorial.

This part 6 in a 7-part series. Click below to explore the other tutorials in the series. 

Type: Original Student Tutorial

Solving Systems of Linear Equations Part 5: Connecting Algebraic Methods to Graphing:

Learn to solve systems of linear equations by connecting algebraic and graphing methods in this interactive tutorial.

This part 5 in a 7-part series. Click below to explore the other tutorials in the series. 

Type: Original Student Tutorial

Solving Systems of Linear Equations Part 4: Advanced Elimination:

Learn to solve systems of linear equations using advanced elimination in this interactive tutorial.

This part 4 in a 7-part series. Click below to explore the other tutorials in the series.

Type: Original Student Tutorial

Solving Systems of Linear Equations Part 3: Basic Elimination:

Learn to solve systems of linear equations using basic elimination in this interactive tutorial.

This part 3 in a 7-part series. Click below to explore the other tutorials in the series.

Part 1: Solving Systems of Linear Equations Part 1: Using Graphs

Part 2: Solving Systems of Linear Equations Part 2: Substitution

Part 4: Solving Systems of Linear Equations Part 4: Advanced Elimination (Coming soon)
Part 5: Solving Systems of Linear Equations Part 5: Connecting Algebraic Methods to Graphing (Coming soon)
Part 6: Solving Systems of Linear Equations Part 6: Writing Systems from Context (Coming soon)
Part 7: Solving Systems of Linear Equations Part 7: Word Problems (Coming soon)

Type: Original Student Tutorial

Solving Systems of Linear Equations Part 2: Substitution:

Learn to solve systems of linear equations using substitution in this interactive tutorial.

This part 2 in a 7-part series. Click below to explore the other tutorials in the series.

Part 1: Solving Systems of Linear Equations Part 1: Using Graphs

Part 3: Solving Systems of Linear Equations Part 3: Basic Elimination (Coming soon)

Part 4: Solving Systems of Linear Equations Part 4: Advanced Elimination (Coming soon)

Part 5: Solving Systems of Linear Equations Part 5: Connecting Algebraic Methods to Graphing (Coming soon)

Part 6: Solving Systems of Linear Equations Part 6: Writing Systems from Context (Coming soon)

Part 7: Solving Systems of Linear Equations Part 7: Word Problems (Coming soon)

Type: Original Student Tutorial

Solving Systems of Linear Equations Part 1: Using Graphs:

Learn how to solve systems of linear equations graphically in this interactive tutorial.

Type: Original Student Tutorial

Solving an Equation Using a Graph:

Follow as we learn why the x-coordinate of the point of intersection of two functions is the solution of the equation f(x) = g(x) in this interactive tutorial.

Type: Original Student Tutorial

Problem-Solving Tasks

Centerpiece:

The purpose of this task is to use geometric and algebraic reasoning to model a real-life scenario. In particular, students are in several places (implicitly or explicitly) to reason as to when making approximations is reasonable and when to round, when to use equalities vs. inequalities, and the choice of units to work with (e.g., mm vs. cm).

Type: Problem-Solving Task

The Circle and The Line:

Although this task is fairly straightforward, it is worth noticing that it does not explicitly tell students to look for intersection points when they graph the circle and the line. Thus, in addition to assessing whether they can solve the system of equations, it is assessing a simple but important piece of conceptual understanding, namely the correspondence between intersection points of the two graphs and solutions of the system.

Type: Problem-Solving Task

Solution Sets:

The typical system of equations or inequalities problem gives the system and asks for the graph of the solution. This task turns the problem around. It gives a solution set and asks for the system that corresponds to it. The purpose of this task is to give students a chance to go beyond the typical problem and make the connections between points in the coordinate plane and solutions to inequalities and equations. Students have to focus on what the graph is showing. When you are describing a region, why does the inequality have to go one way or another? When you pick a point that clearly lies in a region, what has to be true about its coordinates so that it satisfies the associated system of inequalities?

Type: Problem-Solving Task

Quinoa Pasta 3:

This mathematical modeling task also illustrates making sense of a problem. Students are only told that there are two ingredients in the pasta and they have a picture of the box. It might even be better to just show the picture of the box, or to bring in the box and ask the students to pose the question themselves. The brand of pasta is quite commonly available at supermarkets or health food stores such as Whole Foods and even at Amazon.com. The box has the nutritional label and a reference to the website where the students can find other information about the ingredients

Type: Problem-Solving Task

Quinoa Pasta 2:

This mathematical modeling task also illustrates making sense of a problem. Students are given all the relevant information on the nutritional labels, but they have to figure out how to use this information. They have to come up with the idea that they can set up two equations in two unknowns to solve the problem.

Type: Problem-Solving Task

Pairs of Whole Numbers:

This task addresses solving systems of linear equations, and provides a simple example of a system with three equations and three unknown. Two (of many) methods for solving the system are presented. The first takes the given information to make three equations in three unknowns which can then be solved via algebraic manipulation to find the three numbers. The second solution is more clever, creating a single equation in three unknowns from the given information. This equation is then combined with the given information about the sums of pairs of numbers to deduce what the third number is. In reality, this solution is not simpler than the first: rather it sets up a slightly different set of equations which can be readily solved (the key being to take the sum of the three equations in the first solution). It provides a good opportunity for the instructor to show different methods for solving the same system of linear equations.

Type: Problem-Solving Task

Cash Box:

The given solutions for this task involve the creation and solving of a system of two equations and two unknowns, with the caveat that the context of the problem implies that we are interested only in non-negative integer solutions. Indeed, in the first solution, we must also restrict our attention to the case that one of the variables is further even. This aspect of the task is illustrative of the mathematical practice of modeling with mathematics, and crucial as the system has an integer solution for both situations, that is, whether we include the dollar on the floor in the cash box or not.

Type: Problem-Solving Task

Accurately weighing pennies II:

This task is a somewhat more complicated version of "Accurately weighing pennies I'' as a third equation is needed in order to solve part (a) explicitly. Instead, students have to combine the algebraic techniques with some additional problem-solving (numerical reasoning, informed guess-and-check, etc.) Part (b) is new to this task, as with only two types of pennies the weight of the collection determines how many pennies of each type are in the collection. This is no longer the case with three different weights but in this particular case, a collection of 50 is too small to show any ambiguity. This is part of the reason for part (c) of the question where the weight alone no longer determines which type of pennies are in the roll. This shows how important levels of accuracy in measurement are as the answer to part (b) could be different if we were to measure on a scale which is only accurate to the nearest tenth of a gram instead of to the nearest hundredth of a gram.

Type: Problem-Solving Task

Accurately weighing pennies I:

This problem involves solving a system of algebraic equations from a context: depending how the problem is interpreted, there may be one equation or two. The main work in parts (a) and (b) is in setting up the equation(s) appropriately. Question (c) is more subtle and it requires thinking carefully about the accuracy available in a particular measurement (weight). The first two parts of this task could be used for instructional or assessment purposes while the third part should strictly be implemented for instructional purposes.

Type: Problem-Solving Task

Quinoa Pasta 1:

This task asks students to find the amount of two ingredients in a pasta blend. The task provides all the information necessary to solve the problem by setting up two linear equations in two unknowns. This progression of tasks helps distinguish between 8th grade and high school expectations related to systems of linear equations.

Type: Problem-Solving Task

Cell Phone Plans:

This task presents a real-world problem requiring the students to write linear equations to model different cell phone plans. Looking at the graphs of the lines in the context of the cell phone plans allows the students to connect the meaning of the intersection points of two lines with the simultaneous solution of two linear equations. The students are required to find the solution algebraically to complete the task.

Type: Problem-Solving Task

Introduction to Linear Functions:

This task lets students explore the differences between linear and non-linear functions. By contrasting the two, it reinforces properties of linear functions.

Type: Problem-Solving Task

Selling Fuel Oil at a Loss:

The task is a modeling problem which ties in to financial decisions faced routinely by businesses, namely the balance between maintaining inventory and raising short-term capital for investment or re-investment in developing the business.

Type: Problem-Solving Task

Fixing the Furnace:

Students are asked to write equations to model the repair costs of three different companies and determine the conditions for which each company would be least expensive. This task can be used to both assess student understanding of systems of linear equations or to promote discussion and student thinking that would allow for a stronger solidification of these concepts. The solution can be determined in multiple ways, including either a graphical or algebraic approach.

Type: Problem-Solving Task

Tutorials

Example 3: Solving Systems by Elimination:

This video is an example of solving a system of linear equations by elimination where the system has infinite solutions.

Type: Tutorial

Solving Systems of Linear Equations with Elimination Example 1:

This video shows how to solve a system of equations through simple elimination.

Type: Tutorial

Inconsistent Systems of Equations:

This video explains how to identify systems of equations without a solution.

Type: Tutorial

Example 2: Solving Systems by Elimination:

This video shows how to solve systems of equations by elimination.

Type: Tutorial

Addition Elimination Example 1:

This video is an introduction to the elimination method of solving a system of equations.

Type: Tutorial

Systems of Equations Word Problems Example 1:

This video demonstrates solving a word problem by creating a system of linear equations that represents the situation and solving them using elimination.

Type: Tutorial

Graphing systems of equations:

In this tutorial, students will learn how to solve and graph a system of equations.

 

Type: Tutorial

Solving system of equations by graphing:

This tutorial shows students how to solve a system of linear equations by graphing the two equations on the same coordinate plane and identifying the intersection point. 

 

Type: Tutorial

Solving a system of equations by graphing:

This tutorial shows how to solve a system of equations by graphing. Students will see what a no solution system of equations looks like in a graph.

Type: Tutorial

Solving a system of equations using substitution:

This tutorial shows how to solve a system of equations using substitution.  

 

Type: Tutorial

Inconsistent, Dependent, and Independent Systems:

Systems of two linear equations in two variables can have a single solution, no solutions, or an infinite number of solutions. This video gives a great description of inconsistent, dependent, and independent systems. A consistent independent system of equations will have one solution. A consistent dependent system of equations will have infinite number of solutions, and an inconsistent system of equations will have no solution. This tutorial also provides information on how to distinguish a given system of linear equations as inconsistent, independent, or dependent system by looking at the slope and intercept.

Type: Tutorial

Solving Systems of Equations by Elimination:

Systems of two equations in x and y can be solved by adding the equations to create a new equation with one variable eliminated. This new equation can then be solved to find the value of the remaining variable. That value is then substituted into either equation to find the value of other variable.

Type: Tutorial

Solving Systems of Equations by Substitution:

A system of two equations in x and y can be solved by rearranging one equation to represent x in terms of y, and "substituting" this expression for x in the other equation. This creates an equation with only y which can then be solved to find y's value. This value can then be substituted into either equation to find the value of x.

Type: Tutorial

Video/Audio/Animations

Using Systems of Equations Versus One Equation:

When should a system of equations with multiple variables be used to solve an Algebra problem, instead of using a single equation with a single variable?

Type: Video/Audio/Animation

Why the Elimination Method Works:

This chapter presents a new look at the logic behind adding equations- the essential technique used when solving systems of equations by elimination.

Type: Video/Audio/Animation

Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this topic.

Problem-Solving Tasks

Centerpiece:

The purpose of this task is to use geometric and algebraic reasoning to model a real-life scenario. In particular, students are in several places (implicitly or explicitly) to reason as to when making approximations is reasonable and when to round, when to use equalities vs. inequalities, and the choice of units to work with (e.g., mm vs. cm).

Type: Problem-Solving Task

The Circle and The Line:

Although this task is fairly straightforward, it is worth noticing that it does not explicitly tell students to look for intersection points when they graph the circle and the line. Thus, in addition to assessing whether they can solve the system of equations, it is assessing a simple but important piece of conceptual understanding, namely the correspondence between intersection points of the two graphs and solutions of the system.

Type: Problem-Solving Task

Solution Sets:

The typical system of equations or inequalities problem gives the system and asks for the graph of the solution. This task turns the problem around. It gives a solution set and asks for the system that corresponds to it. The purpose of this task is to give students a chance to go beyond the typical problem and make the connections between points in the coordinate plane and solutions to inequalities and equations. Students have to focus on what the graph is showing. When you are describing a region, why does the inequality have to go one way or another? When you pick a point that clearly lies in a region, what has to be true about its coordinates so that it satisfies the associated system of inequalities?

Type: Problem-Solving Task

Quinoa Pasta 3:

This mathematical modeling task also illustrates making sense of a problem. Students are only told that there are two ingredients in the pasta and they have a picture of the box. It might even be better to just show the picture of the box, or to bring in the box and ask the students to pose the question themselves. The brand of pasta is quite commonly available at supermarkets or health food stores such as Whole Foods and even at Amazon.com. The box has the nutritional label and a reference to the website where the students can find other information about the ingredients

Type: Problem-Solving Task

Quinoa Pasta 2:

This mathematical modeling task also illustrates making sense of a problem. Students are given all the relevant information on the nutritional labels, but they have to figure out how to use this information. They have to come up with the idea that they can set up two equations in two unknowns to solve the problem.

Type: Problem-Solving Task

Pairs of Whole Numbers:

This task addresses solving systems of linear equations, and provides a simple example of a system with three equations and three unknown. Two (of many) methods for solving the system are presented. The first takes the given information to make three equations in three unknowns which can then be solved via algebraic manipulation to find the three numbers. The second solution is more clever, creating a single equation in three unknowns from the given information. This equation is then combined with the given information about the sums of pairs of numbers to deduce what the third number is. In reality, this solution is not simpler than the first: rather it sets up a slightly different set of equations which can be readily solved (the key being to take the sum of the three equations in the first solution). It provides a good opportunity for the instructor to show different methods for solving the same system of linear equations.

Type: Problem-Solving Task

Cash Box:

The given solutions for this task involve the creation and solving of a system of two equations and two unknowns, with the caveat that the context of the problem implies that we are interested only in non-negative integer solutions. Indeed, in the first solution, we must also restrict our attention to the case that one of the variables is further even. This aspect of the task is illustrative of the mathematical practice of modeling with mathematics, and crucial as the system has an integer solution for both situations, that is, whether we include the dollar on the floor in the cash box or not.

Type: Problem-Solving Task

Accurately weighing pennies II:

This task is a somewhat more complicated version of "Accurately weighing pennies I'' as a third equation is needed in order to solve part (a) explicitly. Instead, students have to combine the algebraic techniques with some additional problem-solving (numerical reasoning, informed guess-and-check, etc.) Part (b) is new to this task, as with only two types of pennies the weight of the collection determines how many pennies of each type are in the collection. This is no longer the case with three different weights but in this particular case, a collection of 50 is too small to show any ambiguity. This is part of the reason for part (c) of the question where the weight alone no longer determines which type of pennies are in the roll. This shows how important levels of accuracy in measurement are as the answer to part (b) could be different if we were to measure on a scale which is only accurate to the nearest tenth of a gram instead of to the nearest hundredth of a gram.

Type: Problem-Solving Task

Accurately weighing pennies I:

This problem involves solving a system of algebraic equations from a context: depending how the problem is interpreted, there may be one equation or two. The main work in parts (a) and (b) is in setting up the equation(s) appropriately. Question (c) is more subtle and it requires thinking carefully about the accuracy available in a particular measurement (weight). The first two parts of this task could be used for instructional or assessment purposes while the third part should strictly be implemented for instructional purposes.

Type: Problem-Solving Task

Quinoa Pasta 1:

This task asks students to find the amount of two ingredients in a pasta blend. The task provides all the information necessary to solve the problem by setting up two linear equations in two unknowns. This progression of tasks helps distinguish between 8th grade and high school expectations related to systems of linear equations.

Type: Problem-Solving Task

Cell Phone Plans:

This task presents a real-world problem requiring the students to write linear equations to model different cell phone plans. Looking at the graphs of the lines in the context of the cell phone plans allows the students to connect the meaning of the intersection points of two lines with the simultaneous solution of two linear equations. The students are required to find the solution algebraically to complete the task.

Type: Problem-Solving Task

Introduction to Linear Functions:

This task lets students explore the differences between linear and non-linear functions. By contrasting the two, it reinforces properties of linear functions.

Type: Problem-Solving Task

Selling Fuel Oil at a Loss:

The task is a modeling problem which ties in to financial decisions faced routinely by businesses, namely the balance between maintaining inventory and raising short-term capital for investment or re-investment in developing the business.

Type: Problem-Solving Task

Fixing the Furnace:

Students are asked to write equations to model the repair costs of three different companies and determine the conditions for which each company would be least expensive. This task can be used to both assess student understanding of systems of linear equations or to promote discussion and student thinking that would allow for a stronger solidification of these concepts. The solution can be determined in multiple ways, including either a graphical or algebraic approach.

Type: Problem-Solving Task