![]() |
Generated on 9/15/2025 at 5:17 PM |
This cluster includes the following benchmarks.
Visit the specific benchmark webpage to find related instructional resources.
This cluster includes the following Access Points.
Vetted resources educators can use to teach the concepts and skills in this topic.
This part 7 in a 7-part series. Click below to explore the other tutorials in the series.
This part 6 in a 7-part series. Click below to explore the other tutorials in the series.
This part 5 in a 7-part series. Click below to explore the other tutorials in the series.
This part 4 in a 7-part series. Click below to explore the other tutorials in the series.
This part 3 in a 7-part series. Click below to explore the other tutorials in the series.
Part 1: Solving Systems of Linear Equations Part 1: Using Graphs
Part 2: Solving Systems of Linear Equations Part 2: Substitution
Part 4: Solving Systems of Linear Equations Part 4: Advanced Elimination (Coming soon)
Part 5: Solving Systems of Linear Equations Part 5: Connecting Algebraic Methods to Graphing (Coming soon)
Part 6: Solving Systems of Linear Equations Part 6: Writing Systems from Context (Coming soon)
Part 7: Solving Systems of Linear Equations Part 7: Word Problems (Coming soon)
This part 2 in a 7-part series. Click below to explore the other tutorials in the series.
Part 1: Solving Systems of Linear Equations Part 1: Using Graphs
Part 3: Solving Systems of Linear Equations Part 3: Basic Elimination (Coming soon)
Part 4: Solving Systems of Linear Equations Part 4: Advanced Elimination (Coming soon)
Part 5: Solving Systems of Linear Equations Part 5: Connecting Algebraic Methods to Graphing (Coming soon)
Part 6: Solving Systems of Linear Equations Part 6: Writing Systems from Context (Coming soon)
Part 7: Solving Systems of Linear Equations Part 7: Word Problems (Coming soon)
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx
Download the CPALMS Perspectives video student note taking guide.
Download the CPALMS Perspectives video student note taking guide.