**Subject Area:**Science

**Grade:**6

**Body of Knowledge:**Nature of Science

**Idea:**Level 3: Strategic Thinking & Complex Reasoning

**Big Idea:**The Practice of Science -

A: Scientific inquiry is a multifaceted activity; The processes of science include the formulation of scientifically investigable questions, construction of investigations into those questions, the collection of appropriate data, the evaluation of the meaning of those data, and the communication of this evaluation.

B: The processes of science frequently do not correspond to the traditional portrayal of "the scientific method."

C: Scientific argumentation is a necessary part of scientific inquiry and plays an important role in the generation and validation of scientific knowledge.

D: Scientific knowledge is based on observation and inference; it is important to recognize that these are very different things. Not only does science require creativity in its methods and processes, but also in its questions and explanations.

**Date Adopted or Revised:**02/08

**Date of Last Rating:**05/08

**Status:**State Board Approved

**Assessed:**Yes

## Related Courses

## Related Access Points

## Related Resources

## Lesson Plans

## Original Student Tutorial

## Perspectives Video: Teaching Idea

## Resource Collection

## Teaching Ideas

## STEM Lessons - Model Eliciting Activity

In this Model Eliciting Activity (MEA), students will learn how to use very different pieces of information and data to select the best "Bottymals" for a company that wants to manufacture them and place them on the market. The MEA includes information about animal/insect anatomy (locomotion), manufacturing materials used in robotics, and physical science of the 6th grade level. Extensive information is provided to students, thus pre-requisites are minimal.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

In this MEA, students will apply the concepts of heat transfer, especially convection. Students will analyze factors such as temperature that affect the behavior of fluids as they form convection currents.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

In this Model Eliciting Activity (MEA), students will become familiar with the use of scientific names, Linnaeus' binomial nomenclature, and Classification of Living Things. At the same time students will be learning about periphyton in the Everglades, how it forms, its importance, and the factors that affect its development. They will engage in solving a problem situation in which they will have to select the best area to reinsert some fish species that depend on periphyton.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

In this Model-Eliciting Activity (MEA), students work in collaborative learning groups to classify pH values. Students are faced with a problem of correcting possible affects of contaminating pollution. Scenarios of a problem statement help students apply factors to water resources in real world events. They recognize and explain that a scientific theory is well-supported and widely accepted explanation of nature and not simply a claim posed by an individual. Students may prove their proposal by performing a pH wet lab with common kitchen solutions. pH - The Power of Hydrogen Ions implies that the "power of health is in balance" with balanced "Hydrogen Ions." Life exists inside a certain range of pH values.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx

In this MEA, students will select the robots that are more efficient at doing a certain type of job. They will have to analyze data tables that include force, force units, mass, mass units, and friction.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Uncle Henry's Dilemma is a problem solving lesson to determine the global location for the reading of Uncle Henry's will. The students will interpret data sets which include temperature, rainfall, air pollution, travel cost, flight times and health issues to rank five global locations for Uncle Henry's relatives to travel to for the reading of his will. This is an engaging, fun-filled MEA lesson with twists and turns throughout. Students will learn how this procedure of selecting locations can be applied to everyday decisions by the government, a business, a family, or individuals.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

## Original Student Tutorials Science - Grades K-8

Learn how scientific research is done based society's goals and what current group needs as you complete this interactive tutorial.

## Student Resources

## Original Student Tutorial

Learn how scientific research is done based society's goals and what current group needs as you complete this interactive tutorial.

Type: Original Student Tutorial