M/J Comprehensive Science 1, Advanced   (#2002050)

Version for Academic Year:

Course Standards

General Course Information and Notes

General Notes

Laboratory investigations that include the use of scientific inquiry, research, measurement, problem solving, laboratory apparatus and technologies, experimental procedures, and safety procedures are an integral part of this course. The National Science Teachers Association (NSTA) recommends that at the middle school level, all students should have multiple opportunities every week to explore science laboratory investigations (labs). School laboratory investigations are defined by the National Research Council (NRC) as an experience in the laboratory, classroom, or the field that provides students with opportunities to interact directly with natural phenomena or with data collected by others using tools, materials, data collection techniques, and models (NRC, 2006, p. 3). Laboratory investigations in the middle school classroom should help all students develop a growing understanding of the complexity and ambiguity of empirical work, as well as the skills to calibrate and troubleshoot equipment used to make observations. Learners should understand measurement error; and have the skills to aggregate, interpret, and present the resulting data (NRC 2006, p. 77; NSTA, 2007).

Honors and Advanced Level Course Note: Advanced courses require a greater demand on students through increased academic rigor.  Academic rigor is obtained through the application, analysis, evaluation, and creation of complex ideas that are often abstract and multi-faceted.  Students are challenged to think and collaborate critically on the content they are learning. Honors level rigor will be achieved by increasing text complexity through text selection, focus on high-level qualitative measures, and complexity of task. Instruction will be structured to give students a deeper understanding of conceptual themes and organization within and across disciplines. Academic rigor is more than simply assigning to students a greater quantity of work.

Special Notes: 

Instructional Practices 
Teaching from a range of complex text is optimized when teachers in all subject areas implement the following strategies on a routine basis:

  1. Ensuring wide reading from complex text that varies in length.
  2. Making close reading and rereading of texts central to lessons.
  3. Emphasizing text-specific complex questions, and cognitively complex tasks, reinforce focus on the text and cultivate independence.
  4. Emphasizing students supporting answers based upon evidence from the text.
  5. Providing extensive research and writing opportunities (claims and evidence).

Science and Engineering Practices (NRC Framework for K-12 Science Education, 2010)

  • Asking questions (for science) and defining problems (for engineering).
  • Developing and using models.
  • Planning and carrying out investigations.
  • Analyzing and interpreting data.
  • Using mathematics, information and computer technology, and computational thinking.
  • Constructing explanations (for science) and designing solutions (for engineering).
  • Engaging in argument from evidence.
  • Obtaining, evaluating, and communicating information.

Literacy Standards in Science
Secondary science courses include reading standards for literacy in science and technical subjects 6-12 and writing standards for literacy in history/social studies, science, and technical subjects 6-12. The courses also include speaking and listening standards. For a complete list of standards required for this course click on the blue tile labeled course standards. You may also download the complete course including all required standards and notes sections using the export function located at the top of this page.

English Language Development ELD Standards Special Notes Section:
Teachers are required to provide listening, speaking, reading and writing instruction that allows English language learners (ELL) to communicate information, ideas and concepts for academic success in the content area of Science. For the given level of English language proficiency and with visual, graphic, or interactive support, students will interact with grade level words, expressions, sentences and discourse to process or produce language necessary for academic success The ELD standard should specify a relevant content area concept or topic of study chosen by curriculum developers and teachers which maximizes an ELL's need for communication and social skills. To access an ELL supporting document which delineates performance definitions and descriptors, please click on the following link: https://cpalmsmediaprod.blob.core.windows.net/uploads/docs/standards/eld/sc.pdf

General Information

Course Number: 2002050
Course Path:
Abbreviated Title: M/J COMP SCI 1 ADV
Course Length: Year (Y)
Course Attributes:
  • Class Size Core Required
Course Type: Core Academic Course
Course Level: 3
Course Status: Course Approved
Grade Level(s): 6,7,8

Student Resources

Vetted resources students can use to learn the concepts and skills in this course.

Original Student Tutorials

Pnyx Hill: Government in the Open Air:

Explore how weathering and erosion may have affected Pnyx Hill, the ancient Greek democratic meeting place which influenced our modern government with this interactive tutorial.

Type: Original Student Tutorial

Designing the Quickest Car Part 4: Making a Scientific Claim:

Join a group of friends in a STEM challenge to build the quickest toy car as they use evidence from a series of controlled experiments to make a scientific claim in this interactive science tutorial.

Type: Original Student Tutorial

Designing the Quickest Car Part 3: Analyzing Data:

Join a group of friends in a STEM challenge to build the quickest toy car as they analyze data from a series of controlled experiments in this interactive science tutorial.

Type: Original Student Tutorial

Designing the Quickest Car Part 2: Conducting a Controlled Experiment:

Join a group of friends in a STEM challenge to build the quickest toy car as they conduct a series of controlled experiments in this interactive science tutorial.

This is part 2 in a 4-part series. 

Type: Original Student Tutorial

Yikes! Strikes! Severe Weather:

Learn to identify different types of severe weather and the conditions that contribute to the formation of severe weather in this interactive tutorial.

Type: Original Student Tutorial

Designing the Quickest Car Part 1: Planning a Controlled Experiment:

Join a group of friends in a STEM challenge to build the quickest toy car as they plan a controlled experiment in this interactive science tutorial.

Type: Original Student Tutorial

Our Interacting Earth:

Explore the connections and interactions between spheres, including the lithosphere, atmosphere, biosphere, hydrosphere, and cryosphere, on our ever-changing Earth in this interactive tutorial.

Type: Original Student Tutorial

Which Science Topic Would You Choose?:

Learn how scientific research is done based society's goals and what current group needs as you complete this interactive tutorial.

Type: Original Student Tutorial

Unbalanced Forces for the Win!:

Learn how unbalanced forces cause a change in speed, direction or both using sports-themed, interactive tutorial. 

Type: Original Student Tutorial

Help! What Is Infecting my Body?! Part 2:

Take a microscopic journey into the immune system and the world of infectious fungi and parasites.

This is Part 2 in a two-part series of interactive tutorials. Click  to open Part 1.

Type: Original Student Tutorial

Help! What Is Infecting My Body?! Part 1:

Take a microscopic journey into the immune system and the living and non-living worlds of bacteria and viruses.

This is Part 1 in a two-part series of interactive tutorials. Click to open Part 2.

Type: Original Student Tutorial

Stop! In the Name of Scientific Laws:

Explore how we define and describe scientific phenomena using scientific laws in this interactive tutorial.

Type: Original Student Tutorial

Viral Infections and Pandemics:

Learn about viruses that can infect the human body, how they can cause epidemics and pandemics, and how best to protect yourself against infectious diseases like COVID-19 in this interactive tutorial.

Type: Original Student Tutorial

Math Models and Social Distancing:

Learn how math models can show why social distancing during a epidemic or pandemic is important in this interactive tutorial.

Type: Original Student Tutorial

As the Scientific Theory Turns:

Learn about scientific theories and how they can change in this space-themed, interactive tutorial

Type: Original Student Tutorial

Let's Investigate!:

Investigate the benefits and limitations of experiments, observational studies, and comparative studies with this interactive tutorial.

Type: Original Student Tutorial

Soccer Science: Why Experiments Need to be Replicable:

Help Ryan revise his soccer science experiment to make it replicable. In this interactive tutorial, you'll learn what "replicable" means and why it's so important in science.

 

Type: Original Student Tutorial

Class Hamster Science Part 3: Experimental Testing & Results:

Join our class hamster experiment to learn about making hypotheses, organizing and analyzing data into graphs, and making inferences in this interactive tutorial.

Type: Original Student Tutorial

Class Hamster Science Part 2: Research & Experimental Design:

Join our class hamster experiment and learn to identify independent, dependent, and controlled variables in this interactive tutorial.

Type: Original Student Tutorial

Class Hamster Science: Part 1:

Join the investigation into our class hamster's respiration! In this interactive tutorial, we will explore different methods of investigation, hypothesize, interpret data, determine appropriate conclusions, and make predictions.

Type: Original Student Tutorial

Move It!:

Learn about kinetic and potential energy as we explore several sporting activities in this interactive tutorial.  

Type: Original Student Tutorial

Expedition of the Earth:

Learn how scientific knowledge is open to change and how the knowledge about the Earth's surface has changed in the past 100 years as you complete this interactive tutorial.

Type: Original Student Tutorial

Balancing the Machine:

Use models to solve balance problems on a space station in this interactive, math and science tutorial. 

Type: Original Student Tutorial

Science Changes:

Explore the processes of science and how it changes over time. This interactive tutorial uses the historical development of The Cell Theory to illustrate these ideas.

Type: Original Student Tutorial

Detective PEKE and the Energy Transformers:

Explore kinetic and potential energy and how energy is conserved in this interactive tutorial.

Type: Original Student Tutorial

Castles, Catapults and Data: Histograms Part 2:

Learn how to interpret histograms to analyze data, and help an inventor predict the range of a catapult in part 2 of this interactive tutorial series. More specifically, you'll learn to describe the shape and spread of data distributions.

Click HERE to open part 1.

Type: Original Student Tutorial

Castles, Catapults and Data: Histograms Part 1:

Learn how to create a histogram to display continuous data from projectiles launched by a catapult in this interactive tutorial. 

This is part 1 in a 2-part series. Click HERE to open part 2.

Type: Original Student Tutorial

Cells: Alike but Different:

Cells are very diverse, but are the foundation of all living things. Take a look at different types of cells and learn how they have similar needs. Cell are alike, but different!

Type: Original Student Tutorial

The Sun Fuels Our Weather:

The Sun is integral in keeping us warm, but did you know the other ways that the Sun is essential to Earth? Learn about how the Sun is important in fueling our weather on Earth. 

Type: Original Student Tutorial

MacCoder’s Farm Part 3: If Statements:

Explore computer coding on the farm by using relational operators and IF statements to evaluate expressions. In this interactive tutorial, you'll also solve problems involving inequalities.

Click below to check out the other tutorials in the series.

Type: Original Student Tutorial

Moving MADness:

Learn how to calculate and interpret the Mean Absolute Deviation (MAD) of data sets in this travel-themed, interactive statistics tutorial. 

Type: Original Student Tutorial

States of Matter: Phase Transitions:

Explore how heat changes the temperature or the state of matter of a material in this interactive tutorial.

Type: Original Student Tutorial

Heat Transfer Processes:

Explore the three types of heat transfer that occur in our world as you complete this interactive tutorial.

Type: Original Student Tutorial

Stop the Zombie Virus by Interpreting Graphs:

Help scientists find the most effective vaccine for Zombie Virus vaccine by effectively analyzing and summarizing experimental data. In this interactive tutorial, you'll write a scientific question, a claim, supporting evidence and an explanation of what happened during the experiment.

Type: Original Student Tutorial

Science Is by Everyone and for Everyone:

Learn about the amazing science discoveries by people from all over the world and all walks of life. In this interactive tutorial, you'll see that science is by and for everyone!

Type: Original Student Tutorial

The Notion of Motion, Part 3 - Average Velocity:

Describe the average velocity of a dune buggy using kinematics in this interactive tutorial. You'll calculate displacement and average velocity, create and analyze a velocity vs. time scatterplot, and relate average velocity to the slope of position vs. time scatterplots. 

This is part 3 of 3 in a series that mirrors inquiry-based, hands-on activities from our popular workshops.

  • Click  to open The Notion of Motion, Part 1 - Time Measurements
  • Click HERE to open The Notion of Motion, Part 2 - Position vs Time

Type: Original Student Tutorial

Human Body Systems: The Immune System (Part 8 of 9):

Help Igor learn about the immune system as he works to build Dr. Frankenstein’s creature!

This is part 8 of 9, in a series of interactive tutorials on human body systems. Click below to open the others in the series.

Type: Original Student Tutorial

Human Body Systems and Homeostasis (Part 9 of 9):

Learn how human body systems work together to achieve homeostasis, a balance between their external and internal conditions.

This is part 9 of 9, in a series of interactive tutorials on human body systems. Click below to open the others in the series.

Type: Original Student Tutorial

Investigating Plant and Animal Cells:

Compare and contrast plant and animal cells in this interactive tutorial. You'll learn about the structure and function of major organelles of cells, including the cell wall, cell membrane, nucleus, cytoplasm, chloroplasts, mitochondria, and vacuoles. 

Type: Original Student Tutorial

Human Body Systems: The Excretory System (Part 6 of 9):

Discover how the excretory system removes waste products from your body. 

This is part 6 of 9, in a series of interactive tutorials on human body systems. Click below to open the others in the series.

Type: Original Student Tutorial

Infectious Agents: Agent Icky:

Help Agent Icky compare and contrast types of infectious agents that may infect the human body, including viruses, bacteria, fungi, and parasites. By completing this interactive tutorial, maybe you can be a Microbe Buster one day too!

Type: Original Student Tutorial

The Cell Cycle and Mitosis:

Follow the life of a cell in the tightly controlled process called the cell cycle! In this interactive tutorial, you will learn how a single cell gives rise to two identical daughter cells during the cell cycle and mitosis.

Type: Original Student Tutorial

Human Body Systems: The Digestive System (Part 5 of 9):

Chew on facts about the digestive system as you help to bring Dr. Frankenstein's famous creature to life. 

This is part 5 of 9, in a series of interactive tutorials on human body systems. Click below to open the others in the series.

Type: Original Student Tutorial

Human Body Systems: The Reproductive System (Part 7 of 9):

Get answers to your questions about the reproductive systems of biological males and females.

This is part 7 of 9, in a series of interactive tutorials on human body systems. Click below to open the others in the series.

Type: Original Student Tutorial

Mitosis and Cell Division:

Explore the steps of mitosis and cell division in this interactive tutorial, and see how they result in the separation of a cell's genetic material and division of its contents into two identical daughter cells. 

Type: Original Student Tutorial

Human Body Systems: The Circulatory System (Part 3 of 9):

Explore the circulatory system as we bring Frankenstein's creature to life. 

This is part 3 of 9, in a series of interactive tutorials on human body systems. Click below to open the others in the series.

Type: Original Student Tutorial

The Transfer of Heat:

Explore the ways in which heat is transferred and some common examples of each type in our lives in this interactive tutorial.

Type: Original Student Tutorial

Human Body Systems: The Musculoskeletal System (Part 4 of 9):

Learn how the musculoskeletal system enables us to run, dance, even chew! 

This is part 4 of 9, in a series of interactive tutorials on human body systems. Click below to open the others in the series.

Type: Original Student Tutorial

Human Body Systems: The Respiratory System (Part 2 of 9):

Investigate the respiratory system in this interactive tutorial as you help Dr. Frankenstein continue to build his Creature. 

This is part 2 of 9, in a series of interactive tutorials on human body systems. Click below to open the others in the series.

Type: Original Student Tutorial

Tear Me Down and Build Me Up: The Story of Weathering, Erosion, and Deposition:

Weathering, erosion and deposition are driving forces in the development of land formations. Explore them in this interactive tutorial.

Type: Original Student Tutorial

Introduction to Probability:

Learn how to calculate the probability of simple events, that probability is the likeliness of an event occurring, and that some events may be more likely than others to occur in this interactive tutorial.

Type: Original Student Tutorial

Human Body Systems: The Nervous System (Part 1 of 9):

Learn how the nervous system serves as the bridge between the outside world and our bodies.

This is part 1 of 9, in a series of interactive tutorials on human body systems. Click below to open the others in the series.

Type: Original Student Tutorial

Types of Forces:

Examine contact and non-contact forces such as gravity, electrical, and magnetic forces in this interactive tutorial.

Type: Original Student Tutorial

Gravity:

Learn about gravity and its relationship with mass and distance in this interactive tutorial.

Type: Original Student Tutorial

The Notion of Motion, Part 2 - Position vs Time:

Continue an exploration of kinematics to describe linear motion by focusing on position-time measurements from the motion trial in part 1. In this interactive tutorial, you'll identify position measurements from the spark tape, analyze a scatterplot of the position-time data, calculate and interpret slope on the position-time graph, and make inferences about the dune buggy’s average speed

Type: Original Student Tutorial

The Notion of Motion, Part 1 - Time Measurements:

Begin an exploration of kinematics to describe linear motion. You'll observe a motorized dune buggy, describe its motion qualitatively, and identify time values associated with its motion in this interactive lesson.

Type: Original Student Tutorial

It's Raining....Cats and Dogs:

Learn how to make and interpret boxplots in this pet-themed, interactive tutorial.

Type: Original Student Tutorial

What's for Lunch?:

Learn how arguments are formed with claims, reasons, and evidence. In this interactive tutorial, you'll read several short speeches from students hoping to be elected president of the Student Council. We'll trace the claim made by each student and the reasons and evidence they use to support it.

Type: Original Student Tutorial

It Can Be a Zoo of Data!:

Discover how to calculate and interpret the mean, median, mode and range of data sets from the zoo in this interactive tutorial.

Type: Original Student Tutorial

Tracking Distance Over Time:

Learn to measure, graph, and interpret the relationship of distance over time of a sea turtle moving at a constant speed.

Type: Original Student Tutorial

Models in Science:

Learn to identify models and their use in science with this interactive tutorial.

Type: Original Student Tutorial

Classifying Living Things:

Learn how and why plants, animals, and other organisms are classified as you complete this interactive tutorial.

Type: Original Student Tutorial

Scientific Laws:

Learn to identify the importance of scientific laws and how they are different from societal laws.

Type: Original Student Tutorial

The Cell Theory:

Learn to identify and explain the three parts of the Cell Theory in this interactive, bee-themed tutorial.

Type: Original Student Tutorial

Our Atmospheric Blanket:

Explore how our atmosphere both insulates our planet and protects life on Earth in this interactive tutorial.

Type: Original Student Tutorial

Cell Types:

Learn how to classify cells as prokaryotic or eukaryotic and distinguish eukaryotic cells as plant or animal with this interactive tutorial.

Type: Original Student Tutorial

Where Have All the Scrub-Jays Gone?:

Investigate the limiting factors of a Florida ecosystem and describe how these limiting factors affect one native population-the Florida Scrub-Jay-with this interactive tutorial.

Type: Original Student Tutorial

Levels of Organization:

Learn how to identify explicit evidence and understand implicit meaning in a text.

You should be able to describe the hierarchical organization of living things from the atom, to the molecule, to the cell, to the tissue, to the organ, to the organ system, and to the organism.

Type: Original Student Tutorial

Hot on the Trail:

Investigate how temperature affects the rate of chemical reactions in this interactive tutorial.

Type: Original Student Tutorial

Yes or No to GMO?:

Learn what genetic engineering is and some of the applications of this technology. In this interactive tutorial, you’ll gain an understanding of some of the benefits and potential drawbacks of genetic engineering. Ultimately, you’ll be able to think critically about genetic engineering and write an argument describing your own perspective on its impacts.

Type: Original Student Tutorial

Natural Disasters:

Learn to identify several types of natural disasters that occur in Florida and how these disasters can affect people living there as you complete this interactive tutorial.

Type: Original Student Tutorial

Cellular Transport: The Role of the Cell Membrane:

Learn about the function of the cell membrane as a selective barrier that moves material into and out of the cell to maintain homeostasis with this interactive tutorial.

Type: Original Student Tutorial

Weather vs. Climate:

Learn to distinguish between weather and climate in this interactive tutorial.

Type: Original Student Tutorial

Earth's Spheres:

Explore and compare the different spheres of the Earth system, including the geosphere, biosphere, atmosphere, hydrosphere and cryosphere. In this interactive tutorial, you'll also identify specific examples of the interactions between the Earth's spheres.

Type: Original Student Tutorial

Water in Our World:

Learn about the water cycle on Earth and how it affects weather and climate with this interactive tutorial.

Type: Original Student Tutorial

What Causes Weather?:

Explore the components of weather, including temperature, humidity, precipitation, wind direction and wind speed. In this interactive tutorial, you'll relate the jet stream and ocean circulation to the causes of these conditions, which are caused by the energy from the sun.

Type: Original Student Tutorial

Educational Game

Cell Structure Crossword Puzzle:

This cell structure crossword puzzle uses vocabulary from CELLS alive! If you have trouble and need a hint, use the "Search this Site" engine in the lefthand menu. Good Luck!

Type: Educational Game

Image/Photograph

Thunderstorms, Tornadoes, Lightning: A Preparedness Guide:

This PDF included at this site has information about family preparedness plans and safety rules, and information about thunderstorms, tornadoes, and lightning such as facts, when and where they occur, and how they form.

Type: Image/Photograph

Lesson Plan

Sea Level Rise: The Ocean's Uplifting Experience:

The purpose of this lesson is to introduce students to the concept of sea level rise as it occurs through climate change by having them examine 3 specific parameters:  ice distribution, thermal expansion, and analyzing and interpreting data.  The lesson and activities within the lesson were designed using the three dimensions of the Framework for K-12 Science Education and the Next Generation Science Standards – specifically crosscutting concepts, science and engineering practices, and disciplinary core ideas. While there isn’t any required pre-requisite learning required for this lesson, a general understanding of sea-level rise, glaciers, and climate may be beneficial to students. During classroom breaks, pairs of students will develop/discuss their models, revise their interpretations of their models or data, and think-pair-share their thoughts on the investigation segments.

Type: Lesson Plan

Perspectives Video: Experts

MicroGravity Sensors & Statistics:

Statistical analysis played an essential role in using microgravity sensors to determine location of caves in Wakulla County.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Severe Weather Formation:

In a fog about weather patterns? This climatologist will demystify the topic for you.

Type: Perspectives Video: Expert

Perspectives Video: Professional/Enthusiasts

Making Candy: Energy Transfer:

Candy production requires lots of heat. If you can't stand it, get out of the kitchen so you can watch this video on the couch instead.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Oceans and Energy Transfer:

Dive deep into science as an oceanographer describes conduction, convection, and radiation and their relationship to oceanic systems.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Blacksmithing and Heat Transfer:

<p>Forge a new understanding of metallurgy and heat transfer by learning how this blacksmith and collier make nails.</p>

Type: Perspectives Video: Professional/Enthusiast

Presentation/Slideshows

A Walk Through Time:

This interactive tutorial explores the evolution of time measurement through the ages, beginning with Stonehenge and ancient calendar systems. It progresses through sun and water clocks, mechanical and quartz-movement clocks, and atomic clocks.

Type: Presentation/Slideshow

What is Science?:

Resource provides a succinct overview of the nature of science; what science is and is not. Information includes the aims of scientific pursuits, principles, process and thinking.

Type: Presentation/Slideshow

Problem-Solving Tasks

The Titanic 1:

This task asks students to calculate probabilities using information presented in a two-way frequency table.

Type: Problem-Solving Task

Electoral College:

Students are given a context and a dotplot and are asked a number of questions regarding shape, center, and spread of the data.

Type: Problem-Solving Task

Puppy Weights:

Using the information provided, create an appropriate graphical display and answer the questions regarding shape, center and variability.

Type: Problem-Solving Task

Offensive Linemen:

In this task, students are able to conjecture about the differences and similarities in the two groups from a strictly visual perspective and then support their comparisons with appropriate measures of center and variability. This will reinforce that much can be gleaned simply from visual comparison of appropriate graphs, particularly those of similar scale.

Type: Problem-Solving Task

Chocolate Bar Sales:

In this task students use different representations to analyze the relationship between two quantities and to solve a real world problem. The situation presented provides a good opportunity to make connections between the information provided by tables, graphs and equations. In the later part of the problem, the numbers are big enough so that using the formula is the most efficient way to solve the problem; however, creative use of the table or graph will also work.

Type: Problem-Solving Task

Student Center Activity

Edcite: Mathematics Grade 6:

Students can practice answering mathematics questions on a variety of topics. With an account, students can save their work and send it to their teacher when complete.

Type: Student Center Activity

Text Resource

Sinkholes:

Sink your teeth into learning about how sinkholes form. In the video clip, three students investigate sinkholes to determine their cause, and then construct a functioning model. Directions for replicating this model, text and student activities are included.

Type: Text Resource

Tutorials

Mean Absolute Deviation Example:

In this video, you will see two ways to find the Mean Absolute Deviation of a data set.

Type: Tutorial

The Limits of Probability:

This video discusses the limits of probability as between 0 and 1.

Type: Tutorial

Statistics Introduction: Mean, Median, and Mode:

The focus of this video is to help you understand the core concepts of arithmetic mean, median, and mode.

Type: Tutorial

Find a Missing Value Given the Mean:

This video shows how to find the value of a missing piece of data if you know the mean of the data set.

Type: Tutorial

Constructing a Box Plot:

This video demonstrates how to construct a box plot, formerly known as a box and whisker plot.

Type: Tutorial

Interpreting Box Plots:

Students will interpret data presented in a box plot.  

Type: Tutorial

Frequency tables and Dot Plots:

In this video, we organize data into frequency tables and dot plots (sometimes called line plots).

Type: Tutorial

Histograms:

Learn how to create histograms, which summarize data by sorting it into groups.

Type: Tutorial

Dependent and Independent Variables Exercise:

In an equation with 2 variables, we will be able to determine which is the dependent variable, and which is the independent variable.

Type: Tutorial

Dependent and Independent Variables Exercise: Express the Graph as an Equation:

Given a graph, we will be able to find the equation it represents.

Type: Tutorial

Gravitational Forces: Brick vs. Feather:

Would a brick or feather fall faster? What would fall faster on the moon?


Type: Tutorial

Diffusion and Osmosis:

This Khan Academy tutorial guides you through the processes of diffusion and osmosis while explaining the vocabulary and terminology involved in detail.

Type: Tutorial

Introduction to the Cell Membrane:

This Khan Academy tutorial addresses the importance of the phospholipid bilayer in the structure of the cell membrane. The types of molecules that can diffuse through the cell membrane are also discussed.

Type: Tutorial

Parts of the Cell:

This Khan Academy tutorial describes the differences between prokaryotic and eukaryotic cells. It then goes on to discuss in detail the structures and their functions found in the eukaryotic cell.

Type: Tutorial

Proton Pump:

This tutorial will help you to understand how a concentration gradient across a membrane is used. When a molecule or an ion is moved across a membrane from an area of low concentration to an area of high concentration then a gradient is generated. This gradient can be chemical or it can also create a difference in electrical charge across the membrane if ions are involved. The proton pump generates an electrical and chemical gradient that can be used to create ATP which can drive a large number of different biochemical reactions.

Type: Tutorial

Cell Membrane Proteins:

Students will learn about the different types of proteins found in the cell membrane while viewing this Khan Academy tutorial video.

Type: Tutorial

Bacteria:

This video from the Khan Academy introduces the symbiotic relationship between the many bacteria that live inside the human body. The basics of bacteria structure, reproduction, and bacterial infections are discussed.

Type: Tutorial

Regulated Secretion:

This online tutorial will help you to understand the process of regulated secretion. In regulated secretion, proteins are secreted from a cell in large amounts when a specific signal is detected by the cell. The specific example used in this tutorial is the release of insulin after a glucose signal enters a pancreatic beta cell.

Type: Tutorial

Rock 'n Roll Weather:

This resource is a basic introduction to the types of severe weather. Students will learn about the formation of tornadoes, lightning, floods, and hurricanes. Images of each weather system also accompany each section.

Type: Tutorial

Cells vs. Virus: A Battle for Health:

All living things are made of cells. In the human body, these highly efficient units are protected by layer upon layer of defense against icky invaders like the cold virus. Shannon Stiles takes a journey into the cell, introducing the microscopic arsenal of weapons and warriors that play a role in the battle for your health.

Type: Tutorial

Cell Anatomy:

This tutorial will help the learners to learn about the anatomy of the cell. As the learners move the cursor over each cell organelle, they are shown information about that organelle's structure and function.

Type: Tutorial

Prokaryotes, Eukaryotes, & Viruses Tutorial:

This a mostly text resource that provides accurate, straight-forward descriptions of prokaryotes, eukaryotes, and viruses. It could be a great tool to help students compare and contrast organisms with each other and viruses, or a good review passage.

Type: Tutorial

Primary Additive Colors:

This resource helps the user learn the three primary colors that are fundamental to human vision, learn the different colors in the visible spectrum, observe the resulting colors when two colors are added, and learn what white light is. A combination of text and a virtual manipulative allows the user to explore these concepts in multiple ways.

Type: Tutorial

Primary Subtractive Colors:

The user will learn the three primary subtractive colors in the visible spectrum, explore the resulting colors when two subtractive colors interact with each other and explore the formation of black color.

Type: Tutorial

Video/Audio/Animations

Will an Ice Cube Melt Faster in Freshwater or Saltwater?:

With an often unexpected outcome from a simple experiment, students can discover the factors that cause and influence thermohaline circulation in our oceans. In two 45-minute class periods, students complete activities where they observe the melting of ice cubes in saltwater and freshwater, using basic materials: clear plastic cups, ice cubes, water, salt, food coloring, and thermometers. There are no prerequisites for this lesson but it is helpful if students are familiar with the concepts of density and buoyancy as well as the salinity of seawater. It is also helpful if students understand that dissolving salt in water will lower the freezing point of water. There are additional follow up investigations that help students appreciate and understand the importance of the ocean's influence on Earth's climate.

Type: Video/Audio/Animation

Antarctica: A Challenging Work Day:

In this NOVA-adapted video clip, members of a research team deal with the inhospitable climate and other hazards while researching in Antarctica. Many scientists consider the opportunity to do their research in Antarctica a dream come true. The extreme environment and remoteness make it one of the most untouched regions on the planet. There is a treaty that allows more than 20 nations to maintain research facilities, and dedicates the entire continent to peaceful scientific investigation.

Type: Video/Audio/Animation

Towers in the Tempest:

'Towers in the Tempest' is a 4.5 minute narrated animation that explains recent scientific insights into how hurricanes intensify. This intensification can be caused by a phenomenon called a 'hot tower'. For the first time, research meteorologists have run complex simulations using a very fine temporal resolution of 3 minutes. Combining this simulation data with satellite observations enables detailed study of 'hot towers'. The science of 'hot towers' is described using: observed hurricane data from a satellite, descriptive illustrations, and volumetric visualizations of simulation data.

Type: Video/Audio/Animation

27 Storms: Arlene to Zeta:

This video from NASA presents the 2005 hurricane season with actual data that NASA and NOAA satellites measured. Sea surface temperatures, clouds, storm tracks, and hurricane category labels are shown as the hurricane season progresses.

Type: Video/Audio/Animation

Jupiter: Earth's Shield:

More than 155 planets have been found outside of our solar system since the first extra-solar planet was identified in 1995. The search has long been heavily biased towards finding massive planets with short orbits. Now, to find an Earth-like planet, scientists are looking for a planetary setup that is similar to our own, in which a Jupiter-like planet lies a good distance away from its sun. This video segment adapted from NOVA explores how the arrangement of planets in our solar system may have affected the development of life on Earth.

Type: Video/Audio/Animation

How do Hurricanes Form - NASA Spaceplace:

This site describes how hurricanes (tropical cyclones) form. The site includes text, diagrams, and satellite images in a movie.

Type: Video/Audio/Animation

Solar Wind's Effect on Earth:

The Sun produces a solar wind — a continuous flow of charged particles — that can affect us on Earth. It can, for example, disrupt communications, navigation systems, and satellites. Solar activity can also cause power outages, such as the extensive Canadian blackout in 1989. In this video segment adapted from NASA, learn about solar storms and their effects on Earth.

Type: Video/Audio/Animation

Coffee to Carbon:

This site explores the relationship of the size of the cell and many other common objects, molecules, and atoms. It is an interactive website that shows the scale of the objects in relations to each other. 

Type: Video/Audio/Animation

Photosynthesis animation and other cell processes in animation:

This site has fantastic short Flash animations of intricate cell processes, including photosynthesis and the electron transport chain.

Type: Video/Audio/Animation

Virtual Manipulatives

Spinner:

In this activity, students adjust how many sections there are on a fair spinner then run simulated trials on that spinner as a way to develop concepts of probability. A table next to the spinner displays the theoretical probability for each color section of the spinner and records the experimental probability from the spinning trials. This activity allows students to explore the topics of experimental and theoretical probability by seeing them displayed side by side for the spinner they have created. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

Type: Virtual Manipulative

Illustrating the process of diffusion :


This virtual manipulative will help the students to understand that osmosis is the movement of water molecules from an area of high concentration across a semipermeable membrane to an area of low concentration. This illustration of the diffusion process will help the students to understand the concept of osmotic pressure which is created by the movement of the water based on their concentration gradient and thus resulting in the difference of the solute concentration.

Type: Virtual Manipulative

Balance Challenge Game:

Play with objects on a teeter totter to learn about balance.

  • Predict how objects of various masses can be used to make a plank balance.
  • Predict how changing the positions of the masses on the plank will affect the motion of the plank
  • Write rules to predict which way plank will tilt when objects are placed on it.
  • Use your rules to solve puzzles about balancing.

Type: Virtual Manipulative

Box Plot:

In this activity, students use preset data or enter in their own data to be represented in a box plot. This activity allows students to explore single as well as side-by-side box plots of different data. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the Java applet.

Type: Virtual Manipulative

Advanced Data Grapher:

This is an online graphing utility that can be used to create box plots, bubble graphs, scatterplots, histograms, and stem-and-leaf plots.

Type: Virtual Manipulative

The Ramp:

The students must apply force to a given object and try to push it up the ramp. They will see the forces being applied to the object at all times.

Type: Virtual Manipulative

Box Plotter:

Users select a data set or enter their own data to generate a box plot.

Type: Virtual Manipulative

How Fast do Objects Move in the Solar Sytem?:

This interactive demonstrates the impacts of the gravitational force of the sun on motion of objects in the solar system.

Type: Virtual Manipulative

Web Mapping Portal:

A web mapping portal with real-time observations. This National Oceanic and Atmospheric Administration site allows teachers and students to use tools to generate maps, establish relationships between maps and databases, and learn the utility of Geographic Information Systems (GIS).

Type: Virtual Manipulative

Random Drawing Tool - Individual Trials (Probability Simulation):

This virtual manipulative allows one to make a random drawing box, putting up to 21 tickets with the numbers 0-11 on them. After selecting which tickets to put in the box, the applet will choose tickets at random. There is also an option which will show the theoretical probability for each ticket.

Type: Virtual Manipulative

Potential/Kinetic Energy Simulation:

Learn about conservation of energy with a skater! Build tracks, ramps and jumps for the skater and view the kinetic energy, potential energy, thermal energy as he moves. You can adjust the amount of friction and mass. Measurement and graphing tools are built in.

Type: Virtual Manipulative

Histogram Tool:

This virtual manipulative histogram tool can aid in analyzing the distribution of a dataset. It has 6 preset datasets and a function to add your own data for analysis.

Type: Virtual Manipulative

The Disaster Area: FEMA for Kids:

Through this website, students learn about different weather disasters and what to do before, during, and after an emergency.

Type: Virtual Manipulative

Histogram:

In this activity, students can create and view a histogram using existing data sets or original data entered. Students can adjust the interval size using a slider bar, and they can also adjust the other scales on the graph. This activity allows students to explore histograms as a way to represent data as well as the concepts of mean, standard deviation, and scale. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

Type: Virtual Manipulative

Membrane Channel Simulations:

This interactive cell membrane simulation allows students to see how different types of channels allow particles to move through the membrane.

Sample learning goals:

  • Predict when particles will move through the membrane and when they will not.
  • Identify which particle type will diffuse depending on which type of channels are present.
  • Predict the rate of diffusion based on the number and type of channels present.

Type: Virtual Manipulative

Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this course.