MA.912.GR.1.5

Prove relationships and theorems about trapezoids. Solve mathematical and real-world problems involving postulates, relationships and theorems of trapezoids.

Clarifications

Clarification 1: Postulates, relationships and theorems include the Trapezoid Midsegment Theorem and for isosceles trapezoids: base angles are congruent, opposite angles are supplementary and diagonals are congruent.

Clarification 2: Instruction includes constructing two-column proofs, pictorial proofs, paragraph and narrative proofs, flow chart proofs or informal proofs.

Clarification 3: Instruction focuses on helping a student choose a method they can use reliably.

General Information
Subject Area: Mathematics (B.E.S.T.)
Grade: 912
Strand: Geometric Reasoning
Date Adopted or Revised: 08/20
Status: State Board Approved

Related Courses

This benchmark is part of these courses.
1200400: Foundational Skills in Mathematics 9-12 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))
1206310: Geometry (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))
1206320: Geometry Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))
1206315: Geometry for Credit Recovery (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))
7912065: Access Geometry (Specifically in versions: 2015 - 2022, 2022 and beyond (current))

Related Access Points

Alternate version of this benchmark for students with significant cognitive disabilities.
MA.912.GR.1.AP.5: Use the relationships and theorems about trapezoids. Solve mathematical and/or real-world problems involving postulates, relationships and theorems of trapezoids.

Related Resources

Vetted resources educators can use to teach the concepts and skills in this benchmark.

Formative Assessment

An Isosceles Trapezoid Problem:

Students are asked to explain why the sum of the lengths of the diagonals of an isosceles trapezoid is less than its perimeter.

Type: Formative Assessment

MFAS Formative Assessments

An Isosceles Trapezoid Problem:

Students are asked to explain why the sum of the lengths of the diagonals of an isosceles trapezoid is less than its perimeter.

Student Resources

Vetted resources students can use to learn the concepts and skills in this benchmark.

Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this benchmark.