Cluster 2: Draw informal comparative inferences about two populations. (Additional Cluster)Archived

Clusters should not be sorted from Major to Supporting and then taught in that order. To do so would strip the coherence of the mathematical ideas and miss the opportunity to enhance the major work of the grade with the supporting clusters.

General Information
Number: MAFS.7.SP.2
Title: Draw informal comparative inferences about two populations. (Additional Cluster)
Type: Cluster
Subject: Mathematics - Archived
Grade: 7
Domain-Subdomain: Statistics & Probability

Related Standards

This cluster includes the following benchmarks.

Related Access Points

This cluster includes the following access points.

Access Points

MAFS.7.SP.2.AP.3a
Given graphed distributions of two sets of data, make statements comparing the two sets of data.
MAFS.7.SP.2.AP.4a
Identify the range (difference), median (middle), mean (average), or mode (most frequent) of two sets of data.
MAFS.7.SP.2.AP.4b
Make or select an appropriate statement based upon two unequal data sets using measure of central tendency and shape of the distribution.

Related Resources

Vetted resources educators can use to teach the concepts and skills in this topic.

Formative Assessments

Comparing Test Scores:

Students are asked to informally determine the degree of overlap between two distributions with the same mean absolute deviation (MAD) by expressing the difference in their means as a multiple of the MAD.

Type: Formative Assessment

Cranberry Counting:

Students are asked to assess the validity of an inference regarding two distributions given their box plots.

Type: Formative Assessment

TV Ages - 1:

Students are asked to informally determine the degree of overlap between two distributions with the same interquartile range (IQR) by expressing the difference between their medians as a multiple of the IQR.

Type: Formative Assessment

TV Ages - 2:

Students are asked to informally determine the degree of overlap between two distributions with the same interquartile range (IQR) by expressing the difference between their medians as a multiple of the IQR.

Type: Formative Assessment

Word Length:

Students are asked to use the mean and the mean absolute deviation (MAD) to compare two distributions.

Type: Formative Assessment

Overlapping Trees:

Students are asked to compare two distributions given side-by-side box plots.

Type: Formative Assessment

Lesson Plans

Data Sets Represented in Computers:

This lesson shows how data can be represented by computers, in relation to everyday activities we may not be aware that we use computer. It gives an overview of graphing data by creating a histogram based on population data. Using the data collected, students will get a chance to hand write code to show what structure is needed for computers to collect, analyze and distribute such data. This lesson is lesson 1 of the Data Set and Deviation Statistics Unit and bridges statistical concepts of data collection, graphing and analysis with programming a computer using coding language while reinforcing foundational algebraic skills.

Type: Lesson Plan

Sea Ice Analysis Grade 7:

The changing climate is an important topic for both scientific analysis and worldly knowledge. This lesson uses data collected by the National Snow and Ice Data Center to create and use statistical analysis as a tool to evaluate the sea ice loss. Students will use technology to quickly generate graphs for each month looking for trends, patterns, or deviations over time.

Type: Lesson Plan

Sensoring Data:

In this follow up lesson, students will explore data collection using the weather station sensor and perform statistical analysis of the data. Students will use a scientific method of inquiry to plan an investigation of their own. This activity is meant to allow students to use a variety of skills they have acquired throughout a statistics unit in a personally meaningful way.

Type: Lesson Plan

Measurement and Data Collection:

In this interdisciplinary lesson, students will practice the skill of data collection with a variety of tools and by statistically analyzing the class data sets will begin to understand that error is inherent in all data.

This lesson uses the Hip Sciences Sensor Wand and Temperature Probe. Please refer to the corresponding Hip Science Sensor Guide(s) for information on using the sensor.

Type: Lesson Plan

Measurement Data Error:

In this interdisciplinary lesson, students will practice the skill of data collection with a variety of tools and by statistically analyzing the class data sets will begin to understand that error is inherent in all data.

Type: Lesson Plan

Measurement and Data Collection:

In this interdisciplinary lesson, students will practice the skill of data collection with a variety of tools and by statistically analyzing the class data sets will begin to understand that error is inherent in all data.

This lesson uses the Hip Sciences Sensor Wand and Temperature Probe. Please refer to the corresponding Hip Science Sensor Guide(s) for information on using the sensor.

Type: Lesson Plan

Sensoring Data:

In this follow up lesson, students will explore data collection using the weather station sensor and perform statistical analysis of the data. Students will use a scientific method of inquiry to plan an investigation of their own. This activity is meant to allow students to use a variety of skills they have acquired throughout a statistics unit in a personally meaningful way.

Type: Lesson Plan

Hot Coffee Coming Through:

In this lesson, students will explore data collection using the temperature probe sensor and perform statistical analysis of the data. Students will use a scientific method of inquiry to plan an investigation to determine which coffee mug is the best. This activity is meant to allow students to use a variety of skills they have acquired throughout a statistics unit in a problem based STEM challenge. Due to the multiple skills there are many standards that are covered.

There are two options for this lab. The first student handout is for students at an average high school statistics level (Algebra 1) and will allow for standard deviation and graphical analyses of the data. The second option is for advanced students that have been exposed to hypothesis testing of claims (Algebra 2 or AP Stats).

Type: Lesson Plan

Stepping Up Measures of Center:

This lesson allows for students to explore the use of dot plots and mean absolute deviation to compare and draw inferences from two different sets of numerical data.

Type: Lesson Plan

Grapevine Fabrication Part 2:

This lesson is a Follow Up Activity to the Algebra Institute and allows students to collect data to perform basic statistical operations to analyze and make comparisons on variability within a certain brand of raisins. Part 1 must be completed prior to starting Part 2. This investigation can elicit discussion about manufacturing and quality control.

Type: Lesson Plan

Bubble Gum Bubbles Lab:

This lesson is a Follow Up Activity to the Algebra Institute and allows students to collect data by blowing bubble gum bubbles and perform statistical analysis, including standard deviation. This lesson provides students an applied setting to use their previously acquired statistical skills.

Type: Lesson Plan

Height Arm Juxtaposition:

This lesson is a Follow Up Activity to the Algebra Institute and allows students to apply their skills on analyzing bivariate data. This STEM lesson allows students the opportunity to investigate if there is a linear relationship between a person's height and arm length. Using technology the students will explore in-depth how to perform a least square regression as a procedure for determining the line of best fit.

Type: Lesson Plan

Grapevine Fabrication Part 1:

This lesson is a Follow Up Activity to the Algebra Institute and allows students to collect data to perform basic statistical operations to analyze and make comparisons on variability within a certain brand of raisins. Part 1 may be completed without Part 2. This investigation can elicit discussion about manufacturing and quality control.

Type: Lesson Plan

Is My Backpack Too Massive?:

This lesson combines many objectives for seventh grade students. Its goal is for students to create and carry out an investigation about student backpack mass. Students will develop a conclusion based on statistical and graphical analysis.

Type: Lesson Plan

Who's Taller?:

This lesson uses real-world data sets to guide students through representing and comparing data sets in separate dot plots. Students will represent and compare the data sets by using the mean and MAD (mean absolute deviation).

Type: Lesson Plan

Water Troubles:

This Model Eliciting Activity (MEA) presents students with the real-world problem of contaminated drinking water.  Students are asked to provide recommendations for a non-profit organization working to help a small Romanian village acquire clean drinking water.  They will work to develop the best temporary strategies for water treatment, including engineering the best filtering solution using local materials.  Students will utilize measures of center and variation to compare data, assess proportional relationships to make decisions, and perform unit conversions across different measurement systems.

Type: Lesson Plan

Brr! How Cold is the Antarctic? :

In this PBL activity, students use online data to determine the extent of temperature changes in the Antarctic. They will analyze their data using measures of central tendency as well as measuring its variability. They will also use scratch to assist them in the calculations. These lesson will take two 50-minute periods.

Type: Lesson Plan

Original Student Tutorial

Math Models and Social Distancing:

Learn how math models can show why social distancing during a epidemic or pandemic is important in this interactive tutorial.

Type: Original Student Tutorial

Perspectives Video: Experts

Chronic Pain and the Brain:

Florida State researcher Jens Foell discusses the use of fMRI and statistics in chronic pain.

Type: Perspectives Video: Expert

fMRI, Phantom Limb Pain and Statistical Noise:

Jens Foell discusses how statistical noise reduction is used in fMRI brain imaging to be able to determine which specifics parts of the brain are related to certain activities and how this relates to patients that suffer from phantom limb pain.

Type: Perspectives Video: Expert

Histograms Show Trends in Fisheries Data Over Time:

NOAA Fishery management relies on histograms to show patterns and trends over time of fishery data.

Type: Perspectives Video: Expert

Perspectives Video: Professional/Enthusiasts

Field Sampling with the Point-centered Quarter Method:

In this video, Jim Cox describes a sampling method for estimating the density of dead trees in a forest ecosystem.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Nestle Waters & Statistical Analysis:

Hydrogeologist from Nestle Waters discusses the importance of statistical tests in monitoring sustainability and in maintaining consistent water quality in bottled water.

Type: Perspectives Video: Professional/Enthusiast

Statistical Art: Four Words:

Graphic designer and artist, Drexston Redway infuses statistics into his artwork to show population distribution and overlap of poverty and ethnicity in Tallahassee, FL.

Type: Perspectives Video: Professional/Enthusiast

Camera versus Trap Sampling: Improving how NOAA Samples Fish :

Underwater sampling with cameras has made fishery management more accurate for NOAA scientists.

Type: Perspectives Video: Professional/Enthusiast

Sampling Amphibian Populations to Study Human Impact on Wetlands:

Ecologist Rebecca Means discusses the use of statistical sampling and comparative studies in field biology.

Type: Perspectives Video: Professional/Enthusiast

Statistical Analysis of a Randomized Study:

This education researcher uses measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations.

Type: Perspectives Video: Professional/Enthusiast

Perspectives Video: Teaching Idea

Atlatl - Differences in Velocity and Distance:

An archaeologist describes how an ancient weapons technology can be used to bring home dinner or generate data for a math lesson.

Type: Perspectives Video: Teaching Idea

Problem-Solving Tasks

How Long is 30 Seconds?:

The purpose of this task is for students to gain a better understanding of the passage of time. Students with the help of their teacher should work to design an investigation to find out how successful the class is at predicting when 30 seconds has passed. Once the data is recorded students should begin to graph their findings to make comparisons.

Type: Problem-Solving Task

Don’t Spill the Beans!:

The purpose of this task is for students to make a hypothesis, and then doing an experiment to test each students hypothesis. Students will collect and record their data, use graphical methods to describe their data, and finally analyze and interpret their results in the context of the activity.

Type: Problem-Solving Task

Bear Hugs:

In this problem solving activity, students are tasked with measuring the arm lengths of fellow students. Students will record the data and use it to construct a boxplot and scatterplot to help draw conclusions.

Type: Problem-Solving Task

Offensive Linemen:

In this task, students are able to conjecture about the differences and similarities in the two groups from a strictly visual perspective and then support their comparisons with appropriate measures of center and variability. This will reinforce that much can be gleaned simply from visual comparison of appropriate graphs, particularly those of similar scale.

Type: Problem-Solving Task

Virtual Manipulatives

Box Plot:

In this activity, students use preset data or enter in their own data to be represented in a box plot. This activity allows students to explore single as well as side-by-side box plots of different data. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the Java applet.

Type: Virtual Manipulative

Advanced Data Grapher:

This is an online graphing utility that can be used to create box plots, bubble graphs, scatterplots, histograms, and stem-and-leaf plots.

Type: Virtual Manipulative

Box Plotter:

Users select a data set or enter their own data to generate a box plot.

Type: Virtual Manipulative

Student Resources

Vetted resources students can use to learn the concepts and skills in this topic.

Original Student Tutorial

Math Models and Social Distancing:

Learn how math models can show why social distancing during a epidemic or pandemic is important in this interactive tutorial.

Type: Original Student Tutorial

Problem-Solving Task

Offensive Linemen:

In this task, students are able to conjecture about the differences and similarities in the two groups from a strictly visual perspective and then support their comparisons with appropriate measures of center and variability. This will reinforce that much can be gleaned simply from visual comparison of appropriate graphs, particularly those of similar scale.

Type: Problem-Solving Task

Virtual Manipulatives

Box Plot:

In this activity, students use preset data or enter in their own data to be represented in a box plot. This activity allows students to explore single as well as side-by-side box plots of different data. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the Java applet.

Type: Virtual Manipulative

Advanced Data Grapher:

This is an online graphing utility that can be used to create box plots, bubble graphs, scatterplots, histograms, and stem-and-leaf plots.

Type: Virtual Manipulative

Box Plotter:

Users select a data set or enter their own data to generate a box plot.

Type: Virtual Manipulative

Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this topic.

Problem-Solving Task

Offensive Linemen:

In this task, students are able to conjecture about the differences and similarities in the two groups from a strictly visual perspective and then support their comparisons with appropriate measures of center and variability. This will reinforce that much can be gleaned simply from visual comparison of appropriate graphs, particularly those of similar scale.

Type: Problem-Solving Task