MAFS.8.G.2.8

Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.
General Information
Subject Area: Mathematics
Grade: 8
Domain-Subdomain: Geometry
Cluster: Level 1: Recall
Cluster: Understand and apply the Pythagorean Theorem. (Major Cluster) -

Clusters should not be sorted from Major to Supporting and then taught in that order. To do so would strip the coherence of the mathematical ideas and miss the opportunity to enhance the major work of the grade with the supporting clusters.

Date Adopted or Revised: 02/14
Content Complexity Rating: Level 1: Recall - More Information
Date of Last Rating: 02/14
Status: State Board Approved
Assessed: Yes
Test Item Specifications
    Assessed with:

    MAFS.8.G.2.7 

Sample Test Items (1)

Related Courses

This benchmark is part of these courses.
1205050: M/J Accelerated Mathematics Grade 7 (Specifically in versions: 2014 - 2015, 2015 - 2020, 2020 - 2022 (current), 2022 and beyond)
1205070: M/J Grade 8 Pre-Algebra (Specifically in versions: 2014 - 2015, 2015 - 2022 (current), 2022 and beyond)
1204000: M/J Foundational Skills in Mathematics 6-8 (Specifically in versions: 2014 - 2015, 2015 - 2022 (current), 2022 and beyond)
7812030: Access M/J Grade 8 Pre-Algebra (Specifically in versions: 2014 - 2015, 2015 - 2018, 2018 - 2019, 2019 and beyond (current))

Related Access Points

Alternate version of this benchmark for students with significant cognitive disabilities.
MAFS.8.G.2.AP.8a: Apply the Pythagorean Theorem to determine lengths/distances between two points in a coordinate system by forming right triangles.

Related Resources

Vetted resources educators can use to teach the concepts and skills in this benchmark.

Assessments

Sample 2 - Eighth Grade Math State Interim Assessment:

This is a State Interim Assessment for eighth grade.

Type: Assessment

Sample 1 - Eighth Grade Math State Interim Assessment:

This is a State Interim Assessment for eighth grade.

Type: Assessment

Formative Assessments

Distance Between Two Points:

Students are asked to find the distance between two points in the coordinate plane.

Type: Formative Assessment

Distance on the Coordinate Plane:

Students are asked to find the distance between two points in the coordinate plane.

Type: Formative Assessment

Coordinate Plane Triangle:

Students are asked to determine the lengths of the sides of a right triangle in the coordinate plane given the coordinates of its vertices.

Type: Formative Assessment

Calculate Triangle Sides:

Students are asked to determine the length of each side of a right triangle in the coordinate plane given the coordinates of its vertices.

Type: Formative Assessment

Lesson Plans

As the Crow Flies:

This two-day lesson teaches students to use the Pythagorean Theorem with simple right triangles on the first day, then progresses to using the theorem to find the distance between two points on a coordinate graph.

Type: Lesson Plan

The Pythagorean Theorem: Square Areas:

This lesson unit is intended to help you assess how well students are able to use the area of right triangles to deduce the areas of other shapes, use dissection methods for finding areas, organize an investigation systematically and collect data and deduce a generalizable method for finding lengths and areas (The Pythagorean Theorem.)

Type: Lesson Plan

Bike Club Trip:

In this activity the students will rank different locations for a bike club's next destination. In order to do so, the students must use Pythagorean Theorem and well as analyze data of the quantitative and qualitative type.

Type: Lesson Plan

Alas, Poor Pythagoras, I Knew You Well! #2:

Using different activities, students will find real life uses for the Pythagorean Theorem.

Type: Lesson Plan

Perspectives Video: Professional/Enthusiasts

Field Sampling with the Point-centered Quarter Method:

In this video, Jim Cox describes a sampling method for estimating the density of dead trees in a forest ecosystem.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

What's the Distance from Here to the Middle of Nowhere?:

Find out how math and technology can help you (try to) get away from civilization.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Presentation/Slideshow

Pythagoras' Theorem:

This resource can be used to introduce the Pythagorean Theorem to students. It provides sketches, applets, examples and easy-to-understand visual proofs as well as an algebra proof for the theorem.

It also includes interactive multiple choice practice questions on solving for a side of a right triangle, and applications involving right triangles, as well as a hands-on activity for students to do that allows them to create their own proof.

Type: Presentation/Slideshow

Problem-Solving Tasks

A Rectangle in the Coordinate Plane:

This task provides an opportunity to apply the Pythagorean theorem to multiple triangles in order to determine the length of the hypotenuse; the converse of the Pythagorean theorem is also required in order to conclude that certain angles are right angles.

Type: Problem-Solving Task

Bird and Dog Race:

The purpose of this task is for students to use the Pythagorean Theorem as a problem-solving tool to calculate the distance between two points on a grid. In this case the grid is also a map, and the street names can be viewed as defining a coordinate system (although the coordinate system is not needed to solve the problem).

Type: Problem-Solving Task

Is This a Rectangle?:

The goal of this task is to provide an opportunity for students to apply a wide range of ideas from geometry and algebra in order to show that a given quadrilateral is a rectangle. Creativity will be essential here as the only given information is the Cartesian coordinates of the quadrilateral's vertices. Using this information to show that the four angles are right angles will require some auxiliary constructions. Students will need ample time and, for some of the methods provided below, guidance. The reward of going through this task thoroughly should justify the effort because it provides students an opportunity to see multiple geometric and algebraic constructions unified to achieve a common purpose. The teacher may wish to have students first brainstorm for methods of showing that a quadrilateral is rectangle (before presenting them with the explicit coordinates of the rectangle for this problem): ideally, they can then divide into groups and get to work straightaway once presented with the coordinates of the quadrilateral for this problem.

Type: Problem-Solving Task

Student Center Activity

Edcite: Mathematics Grade 8:

Students can practice answering mathematics questions on a variety of topics. With an account, students can save their work and send it to their teacher when complete.

Type: Student Center Activity

Text Resources

Pythagoras Explained:

This informational text resource is intended to support reading in the content area. The text describes a method for predicting the win-loss record for baseball teams based on runs scored and runs allowed, using the "Pythagorean Expectation" formula invented by Bill James. The text goes on to show the relationship of the prediction formula to the Pythagorean theorem, pointing out a very cool application of the theorem to the world of sports.

Type: Text Resource

The Pythagorean Theorem:

This overview of the Pythagorean Theorem covers its purpose, equation, application, and validity. The site also provides a number of illustrations which help students visualize the theorem, and links to related resources for further understanding.

Type: Text Resource

Tutorial

Distance formula and the Pythagorean Theorem:

This tutorial shows students how to find the distance between lines using the Pythagorean Theorem. This video makes a connection between the distance formula and the Pythagorean Theorem.

Type: Tutorial

STEM Lessons - Model Eliciting Activity

Bike Club Trip:

In this activity the students will rank different locations for a bike club's next destination. In order to do so, the students must use Pythagorean Theorem and well as analyze data of the quantitative and qualitative type.

MFAS Formative Assessments

Calculate Triangle Sides:

Students are asked to determine the length of each side of a right triangle in the coordinate plane given the coordinates of its vertices.

Coordinate Plane Triangle:

Students are asked to determine the lengths of the sides of a right triangle in the coordinate plane given the coordinates of its vertices.

Distance Between Two Points:

Students are asked to find the distance between two points in the coordinate plane.

Distance on the Coordinate Plane:

Students are asked to find the distance between two points in the coordinate plane.

Student Resources

Vetted resources students can use to learn the concepts and skills in this benchmark.

Perspectives Video: Professional/Enthusiast

What's the Distance from Here to the Middle of Nowhere?:

Find out how math and technology can help you (try to) get away from civilization.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Problem-Solving Task

Is This a Rectangle?:

The goal of this task is to provide an opportunity for students to apply a wide range of ideas from geometry and algebra in order to show that a given quadrilateral is a rectangle. Creativity will be essential here as the only given information is the Cartesian coordinates of the quadrilateral's vertices. Using this information to show that the four angles are right angles will require some auxiliary constructions. Students will need ample time and, for some of the methods provided below, guidance. The reward of going through this task thoroughly should justify the effort because it provides students an opportunity to see multiple geometric and algebraic constructions unified to achieve a common purpose. The teacher may wish to have students first brainstorm for methods of showing that a quadrilateral is rectangle (before presenting them with the explicit coordinates of the rectangle for this problem): ideally, they can then divide into groups and get to work straightaway once presented with the coordinates of the quadrilateral for this problem.

Type: Problem-Solving Task

Student Center Activity

Edcite: Mathematics Grade 8:

Students can practice answering mathematics questions on a variety of topics. With an account, students can save their work and send it to their teacher when complete.

Type: Student Center Activity

Tutorial

Distance formula and the Pythagorean Theorem:

This tutorial shows students how to find the distance between lines using the Pythagorean Theorem. This video makes a connection between the distance formula and the Pythagorean Theorem.

Type: Tutorial

Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this benchmark.

Perspectives Video: Professional/Enthusiast

What's the Distance from Here to the Middle of Nowhere?:

Find out how math and technology can help you (try to) get away from civilization.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Problem-Solving Tasks

A Rectangle in the Coordinate Plane:

This task provides an opportunity to apply the Pythagorean theorem to multiple triangles in order to determine the length of the hypotenuse; the converse of the Pythagorean theorem is also required in order to conclude that certain angles are right angles.

Type: Problem-Solving Task

Bird and Dog Race:

The purpose of this task is for students to use the Pythagorean Theorem as a problem-solving tool to calculate the distance between two points on a grid. In this case the grid is also a map, and the street names can be viewed as defining a coordinate system (although the coordinate system is not needed to solve the problem).

Type: Problem-Solving Task

Is This a Rectangle?:

The goal of this task is to provide an opportunity for students to apply a wide range of ideas from geometry and algebra in order to show that a given quadrilateral is a rectangle. Creativity will be essential here as the only given information is the Cartesian coordinates of the quadrilateral's vertices. Using this information to show that the four angles are right angles will require some auxiliary constructions. Students will need ample time and, for some of the methods provided below, guidance. The reward of going through this task thoroughly should justify the effort because it provides students an opportunity to see multiple geometric and algebraic constructions unified to achieve a common purpose. The teacher may wish to have students first brainstorm for methods of showing that a quadrilateral is rectangle (before presenting them with the explicit coordinates of the rectangle for this problem): ideally, they can then divide into groups and get to work straightaway once presented with the coordinates of the quadrilateral for this problem.

Type: Problem-Solving Task