Mathematics for Data and Financial Literacy   (#1200387)

Version for Academic Year:

Course Standards

General Course Information and Notes

Version Description

In Mathematics for Data and Financial Literacy, instructional time will emphasize five areas: (1) extending knowledge of ratios, proportions and functions to data and financial contexts; (2) developing understanding of basic economic and accounting principles; (3) determining advantages and disadvantages of credit accounts and short- and long-term loans; (4) developing understanding of planning for the future through investments, insurance and retirement plans and (5) extending knowledge of data analysis to create and evaluate reports and to make predictions.

All clarifications stated, whether general or specific to Mathematics for Data and Financial Literacy, are expectations for instruction of that benchmark.

Curricular content for all subjects must integrate critical-thinking, problem-solving, and workforce-literacy skills; communication, reading, and writing skills; mathematics skills; collaboration skills; contextual and applied-learning skills; technology-literacy skills; information and media-literacy skills; and civic-engagement skills.

General Notes

Florida’s Benchmarks for Excellent Student Thinking (B.E.S.T.) Standards:

This course includes Florida’s B.E.S.T. ELA Expectations (EE) and Mathematical Thinking and Reasoning Standards (MTRs) for students. Florida educators should intentionally embed these standards within the content and their instruction as applicable. For guidance on the implementation of the EEs and MTRs, please visit and select the appropriate B.E.S.T. Standards package.

English Language Development ELD Standards Special Notes Section:

Teachers are required to provide listening, speaking, reading and writing instruction that allows English language learners (ELL) to communicate information, ideas and concepts for academic success in the content area of Mathematics. For the given level of English language proficiency and with visual, graphic, or interactive support, students will interact with grade level words, expressions, sentences and discourse to process or produce language necessary for academic success. The ELD standard should specify a relevant content area concept or topic of study chosen by curriculum developers and teachers which maximizes an ELL’s need for communication and social skills. To access an ELL supporting document which delineates performance definitions and descriptors, please click on the following link:

General Information

Course Number: 1200387
Abbreviated Title: MATH DATA & FIN LIT
Number of Credits: One (1) credit
Course Length: Year (Y)
Course Attributes:
  • Class Size Core Required
Course Type: Core Academic Course
Course Level: 2
Course Status: State Board Approved
Grade Level(s): 9,10,11,12
Graduation Requirement: Mathematics

Educator Certifications

One of these educator certification options is required to teach this course.

Student Resources

Vetted resources students can use to learn the concepts and skills in this course.

Original Student Tutorials

Travel with Functions:

Learn how to evaluate and interpret function notation by following Melissa and Jose on their travels in this interactive tutorial.

Type: Original Student Tutorial

Happy Halloween! Textual Evidence and Inferences:

Cite text evidence and make inferences in this tutorial that will teach you all about the "real" history of Halloween! 

Type: Original Student Tutorial

Perspectives Video: Professional/Enthusiast

Base 16 Notation in Computing:

Listen in as a computing enthusiast describes how hexadecimal notation is used to express big numbers in just a little space.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Problem-Solving Tasks

Quadrupling Leads to Halving:

Students explore the structure of the operation s/(vn). This question provides students with an opportunity to see expressions as constructed out of a sequence of operations: first taking the square root of n, then dividing the result of that operation into s.

Type: Problem-Solving Task

Yam in the Oven:

The purpose of this task is to give students practice interpreting statements using function notation. It can be used as a diagnostic if students seem to be having trouble with function notation, for example mistakenly interpreting f(x) as the product of f and x.

Type: Problem-Solving Task

The Random Walk:

This task requires interpreting a function in a non-standard context. While the domain and range of this function are both numbers, the way in which the function is determined is not via a formula but by a (pre-determined) sequence of coin flips. In addition, the task provides an opportunity to compute some probabilities in a discrete situation. The task could be used to segue the discussion from functions to probability, in particular the early standards in the S-CP domain.

Type: Problem-Solving Task

Cell Phones:

This simple task assesses whether students can interpret function notation. The four parts of the task provide a logical progression of exercises for advancing understanding of function notation and how to interpret it in terms of a given context.

Type: Problem-Solving Task

The High School Gym:

This task asks students to consider functions in regard to temperatures in a high school gym.

Type: Problem-Solving Task

Random Walk II:

These problems form a bridge between work on functions and work on probability. The task is better suited for instruction than for assessment as it provides students with a non-standard setting in which to interpret the meaning of functions. Students should carry out the process of flipping a coin and modeling this Random Walk in order to develop a sense of the process before analyzing it mathematically.

Type: Problem-Solving Task

Pizza Place Promotion:

This tasks asks students to use functions to predict the price of a pizza on a specific day and find which day the pizza would be cheapest according to a promotion.

Type: Problem-Solving Task

Equations and Formulas:

In this task, students will use inverse operations to solve the equations for the unknown variable or for the designated variable if there is more than one.

Type: Problem-Solving Task

Radius of a Cylinder:

Students are asked to interpret the effect on the value of an expression given a change in value of one of the variables.

Type: Problem-Solving Task

Mixing Fertilizer:

Students examine and answer questions related to a scenario similar to a "mixture" problem involving two different mixtures of fertilizer. In this example, students determine and then compare expressions that correspond to concentrations of various mixtures. Ultimately, students generalize the problem and verify conclusions using algebraic rather than numerical expressions.

Type: Problem-Solving Task

Mixing Candies:

Students are asked to interpret expressions and equations within the context of the amounts of caramels and truffles in a box of candy.

Type: Problem-Solving Task

Kitchen Floor Tiles:

This problem asks students to consider algebraic expressions calculating the number of floor tiles in given patterns. The purpose of this task is to give students practice in reading, analyzing, and constructing algebraic expressions, attending to the relationship between the form of an expression and the context from which it arises. The context here is intentionally thin; the point is not to provide a practical application to kitchen floors, but to give a framework that imbues the expressions with an external meaning.

Type: Problem-Solving Task

Delivery Trucks:

This resource describes a simple scenario which can be represented by the use of variables. Students are asked to examine several variable expressions, interpret their meaning, and describe what quantities they each represent in the given context.

Type: Problem-Solving Task

Animal Populations:

In this task students interpret the relative size of variable expressions involving two variables in the context of a real world situation. All given expressions can be interpreted as quantities that one might study when looking at two animal populations.

Type: Problem-Solving Task

Seeing Dots:

The purpose of this task is to identify the structure in the two algebraic expressions by interpreting them in terms of a geometric context. Students will have likely seen this type of process before, so the principal source of challenge in this task is to encourage a multitude and variety of approaches, both in terms of the geometric argument and in terms of the algebraic manipulation.

Type: Problem-Solving Task


Function Notation:

This tutorial will help the students to understand the function notation such as f(x), which can be thought as another way of representing the y-value in a function, especially when graphing. The y-axis is even labeled as the f(x) axis, when graphing.

Type: Tutorial

Population Demographic Lab:

This lab simulation allows you to use real demographic data, collected by the US Census Bureau, to analyze and make predictions centered around demographic trends. You will explore factors that impact the birth, death and immigration rate of a population and learn how the population transitions having taken place globally.

Type: Tutorial


Solving Literal Equations:

Literal equations are formulas for calculating the value of one unknown quantity from one or more known quantities. Variables in the formula are replaced by the actual or 'literal' values corresponding to a specific instance of the relationship.

Type: Video/Audio/Animation

Example of Solving for a Variable - Khan Academy:

This video takes a look at rearranging a formula to highlight a quantity of interest.

Type: Video/Audio/Animation

Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this course.