Mathematics for College Algebra   (#1200700)

Version for Academic Year:

Course Standards

General Course Information and Notes

Version Description

In Mathematics for College Algebra, instructional time will emphasize five areas: (1) developing fluency with the Laws of Exponents with numerical and algebraic expressions; (2) extending arithmetic operations with algebraic expressions to include rational and polynomial expressions; (3) solving one-variable exponential, logarithmic, radical and rational equations and interpreting the viability of solutions in real-world contexts; (4) modeling with and applying linear, quadratic, absolute value, exponential, logarithmic and piecewise functions and systems of linear equations and inequalities; (5) extending knowledge of functions to include inverse and composition.

All clarifications stated, whether general or specific to Mathematics for College Algebra, are expectations for instruction of that benchmark.

Curricular content for all subjects must integrate critical-thinking, problem-solving, and workforce-literacy skills; communication, reading, and writing skills; mathematics skills; collaboration skills; contextual and applied-learning skills; technology-literacy skills; information and media-literacy skills; and civic-engagement skills.

General Notes

Florida’s Benchmarks for Excellent Student Thinking (B.E.S.T.) Standards
This course includes Florida’s B.E.S.T. ELA Expectations (EE) and Mathematical Thinking and Reasoning Standards (MTRs) for students. Florida educators should intentionally embed these standards within the content and their instruction as applicable. For guidance on the implementation of the EEs and MTRs, please visit and select the appropriate B.E.S.T. Standards package.

English Language Development ELD Standards Special Notes Section:

Teachers are required to provide listening, speaking, reading and writing instruction that allows English language learners (ELL) to communicate information, ideas and concepts for academic success in the content area of Mathematics. For the given level of English language proficiency and with visual, graphic, or interactive support, students will interact with grade level words, expressions, sentences and discourse to process or produce language necessary for academic success. The ELD standard should specify a relevant content area concept or topic of study chosen by curriculum developers and teachers which maximizes an ELL’s need for communication and social skills. To access an ELL supporting document which delineates performance definitions and descriptors, please click on the following link:

General Information

Course Number: 1200700
Course Path:
Abbreviated Title: MATH COLL ALGEBRA
Number of Credits: One (1) credit
Course Length: Year (Y)
Course Attributes:
  • Class Size Core Required
Course Type: Core Academic Course
Course Level: 2
Course Status: State Board Approved
Grade Level(s): 9,10,11,12
Graduation Requirement: Mathematics

Educator Certifications

One of these educator certification options is required to teach this course.

Student Resources

Vetted resources students can use to learn the concepts and skills in this course.

Original Student Tutorials

Travel with Functions:

Learn how to evaluate and interpret function notation by following Melissa and Jose on their travels in this interactive tutorial.

Type: Original Student Tutorial

Happy Halloween! Textual Evidence and Inferences:

Cite text evidence and make inferences in this tutorial that will teach you all about the "real" history of Halloween! 

Type: Original Student Tutorial

Problem-Solving Tasks

Yam in the Oven:

The purpose of this task is to give students practice interpreting statements using function notation. It can be used as a diagnostic if students seem to be having trouble with function notation, for example mistakenly interpreting f(x) as the product of f and x.

Type: Problem-Solving Task

The Random Walk:

This task requires interpreting a function in a non-standard context. While the domain and range of this function are both numbers, the way in which the function is determined is not via a formula but by a (pre-determined) sequence of coin flips. In addition, the task provides an opportunity to compute some probabilities in a discrete situation. The task could be used to segue the discussion from functions to probability, in particular the early standards in the S-CP domain.

Type: Problem-Solving Task

Cell Phones:

This simple task assesses whether students can interpret function notation. The four parts of the task provide a logical progression of exercises for advancing understanding of function notation and how to interpret it in terms of a given context.

Type: Problem-Solving Task

The High School Gym:

This task asks students to consider functions in regard to temperatures in a high school gym.

Type: Problem-Solving Task

Random Walk II:

These problems form a bridge between work on functions and work on probability. The task is better suited for instruction than for assessment as it provides students with a non-standard setting in which to interpret the meaning of functions. Students should carry out the process of flipping a coin and modeling this Random Walk in order to develop a sense of the process before analyzing it mathematically.

Type: Problem-Solving Task

Pizza Place Promotion:

This tasks asks students to use functions to predict the price of a pizza on a specific day and find which day the pizza would be cheapest according to a promotion.

Type: Problem-Solving Task

Equations and Formulas:

In this task, students will use inverse operations to solve the equations for the unknown variable or for the designated variable if there is more than one.

Type: Problem-Solving Task


Function Notation:

This tutorial will help the students to understand the function notation such as f(x), which can be thought as another way of representing the y-value in a function, especially when graphing. The y-axis is even labeled as the f(x) axis, when graphing.

Type: Tutorial


Solving Literal Equations:

Literal equations are formulas for calculating the value of one unknown quantity from one or more known quantities. Variables in the formula are replaced by the actual or 'literal' values corresponding to a specific instance of the relationship.

Type: Video/Audio/Animation

Example of Solving for a Variable - Khan Academy:

This video takes a look at rearranging a formula to highlight a quantity of interest.

Type: Video/Audio/Animation

Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this course.