MA.5.A.4.2Archived Standard

Construct and describe a graph showing continuous data, such as a graph of a quantity that changes over time.

Remarks

In the 2007 Sunshine State Standards for mathematics, continuous line graphs are introduced for the first time in fifth grade. Students relate graphic displays to scenarios involving change over time and vice versa.

Example: A bicycle rider starts riding and steadily increases his speed until he is riding 10 mph after 5 minutes. This means that he was riding 0 mph at 0 minutes, 2 mph after 1 minute, 4 mph after 2 minutes, and so forth. After he reaches 10mph, he rides at that rate for 8 minutes. Then he hits a tree and stops suddenly. Draw a graph of the rider's speed versus time during his ride.

Example: The graph below describes a trip to the store.


Write a story that fits the graph. Explain what happens at each highlighted point.

General Information
Subject Area: X-Mathematics (former standards - 2008)
Grade: 5
Body of Knowledge: Algebra
Idea: Level 3: Strategic Thinking & Complex Reasoning
Supporting Idea: Algebra - Algebra
Date Adopted or Revised: 09/07
Date of Last Rating: 06/07
Status: State Board Approved - Archived
Assessed: Yes

Related Access Points

Alternate version of this benchmark for students with significant cognitive disabilities.

Related Resources

Vetted resources educators can use to teach the concepts and skills in this benchmark.

Educational Software / Tool

Free Graph Paper:

A variety of graph paper types for printing, including Cartesian, polar, engineering, isometric, logarithmic, hexagonal, probability, and Smith chart.

Type: Educational Software / Tool

Video/Audio/Animation

Soybean growth rate response to touch:

A time-lapse video showing differential growth rates for touch-treated seedlings and control seedlings. This would be appropriate for lessons about plant growth responses to environmental stress and graphing growth rate. Plants were grown in a vermiculite soilless medium with calcium-enhanced water. No other minerals or nutrients were used. Plants were grown in a dark room with specially-filtered green light. The plants did not grow by cellular reproduction but only by expansion of existing cells in the hypocotyl region below the 'hook'.
Video contains three plants in total. The first two plants to emerge from the vermiculite medium are the control (right) and treatment (left) plants. A third plant emerges in front of these two but is removed at the time of treatment and is not relevant except to help indicate when treatment was applied (watch for when it disappears). When that plant disappears, the slowed growth rate of the treatment plant is apparent.
Treatment included a gentle flexing of the hypocotyl region of the treatment seedling for approximately 5 seconds. A rubber glove was used at this time to avoid an contamination of the plant tissue.
Some video players allow users to 'scrub' the playback back and forth. This would help teachers or students isolate particular times (as indicated by the watch) and particular measurements (as indicated by the cm scale). A graph could be constructed by first creating a data table and then plotting the data points from the table. Multiple measurements from the video could be taken to create an accurate graph of the plants' growth rates (treatment vs control).
Instructions for graphing usage:
The scale in the video is in centimeters (one cm increments). Students could observe the initial time on the watch in the video and use that observation to represent time (t) = 0. For that value, a mark could be made to indicate the height of the seedlings. As they advance and pause the video repeatedly, the students would mark the time (+2.5 hours for example) and mark the related seedling heights. It is not necessary to advance the video at any regular interval but is necessary to mark the time and related heights as accurately as possible. Students may use different time values and would thus have different data sets but should find that their graphs are very similar. (Good opportunity to collect data from real research and create their own data sets) It is advised that the students collect multiple data points around the time where the seedling growth slows in response to touch to more accurately collect information around that growth rate slowing event. The resulting graph should have an initial growth rate slope, a flatter slope after stress treatment, and a return to approximately the same slope as seen pre-treatment. More data points should yield a more thorough view of this. This would be a good point to discuss. Students can use some of their data points to calculate approximate pre-treatment, immediate post-treatment, and late post-treatment slopes for both the control and treatment seedlings.
This video was created by the submitter and is original content.
Full screen playback should be an option for most video players. Video quality may appear degraded with a larger image but this may aid viewing the watch and scale for data collection.

Type: Video/Audio/Animation

Student Resources

Vetted resources students can use to learn the concepts and skills in this benchmark.

Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this benchmark.