Cluster 1: Know that there are numbers that are not rational, and approximate them by rational numbers. (Supporting Cluster)Archived

Clusters should not be sorted from Major to Supporting and then taught in that order. To do so would strip the coherence of the mathematical ideas and miss the opportunity to enhance the major work of the grade with the supporting clusters.

General Information
Number: MAFS.8.NS.1
Title: Know that there are numbers that are not rational, and approximate them by rational numbers. (Supporting Cluster)
Type: Cluster
Subject: Mathematics - Archived
Grade: 8
Domain-Subdomain: The Number System

Related Standards

This cluster includes the following benchmarks.

Related Access Points

This cluster includes the following access points.

Access Points

MAFS.8.NS.1.AP.1a
Distinguish between rational and irrational numbers. Show that any number that can be expressed as a fraction is a rational number.
MAFS.8.NS.1.AP.1b
Using whole number numerators from 8 to 20 and odd whole number denominators from 3 to 7, identify rational decimal expansions.
MAFS.8.NS.1.AP.2a
Locate approximations of irrational numbers on a number line.
MAFS.8.NS.1.AP.1c
Round or truncate rational decimal expansions to the hundredths place.

Related Resources

Vetted resources educators can use to teach the concepts and skills in this topic.

Formative Assessments

Repeating Decimals:

This lesson unit is intended to help you assess how well students are able to:

  • Translate between decimal and fraction notation, particularly when the decimals are repeating.
  • Create and solve simple linear equations to find the fractional equivalent of a repeating decimal.
  • Understand the effect of multiplying a decimal by a power of 10.

Type: Formative Assessment

Rational Numbers:

Students are asked to identify rational numbers from a list of real numbers, explain how to identify rational numbers, and to identify the number system that contains numbers that are not rational.

Type: Formative Assessment

Decimal to Fraction Conversion:

Students are given several terminating and repeating decimals and asked to convert them to fractions.

Type: Formative Assessment

The Irrational Beauty of the Golden Ratio:

Students are asked to find and interpret lower and upper bounds of an irrational expression using a calculator.

Type: Formative Assessment

Approximating Irrational Numbers:

Students are asked to plot the square root of eight on three number lines, scaled to progressively more precision.

Type: Formative Assessment

Locating Irrational Numbers:

Students are asked to graph three different irrational numbers on number lines.

Type: Formative Assessment

Comparing Irrational Numbers:

Students are asked to estimate the value of several irrational numbers using a calculator and order them on a number line.

Type: Formative Assessment

Fraction to Decimal Conversion:

Students are given a fraction to convert to a decimal and are asked to determine if the decimal repeats.

Type: Formative Assessment

Lesson Plans

Testing Imperfection:

Students will use number lines to approximate the square root value of non-perfect square numbers to the tenth place. This lesson supports plotting, comparing, and ordering irrational numbers as well as graphing them on a number line, specifically those in the form of nonperfect square roots.

Type: Lesson Plan

Repeating Decimals:

This lesson unit is intended to help you assess how well students are able to translate between decimal and fraction notation, particularly when the decimals are repeating, create and solve simple linear equations to find the fractional equivalent of a repeating decimal, and understand the effect of multiplying a decimal by a power of 10.

Type: Lesson Plan

Pin the Irrational "Tail" on the Number Line:

Students will use their knowledge of perfect squares and square roots to determine a rational number to approximate an irrational number and find their locations on a number line. They will complete an activity that guides them to zoom further into a number line to find more accurate approximations for irrational numbers. They will conclude that between two rational numbers is another rational number and therefore the further the place value in the approximation, the more accurate the location on the number line.

Type: Lesson Plan

Who's Being Irrational?:

In this lesson, students will learn how irrational numbers differ from rational numbers. The students will complete a graphic organizer that categorizes rational and irrational numbers. Students will also be able to identify irrational numbers found in the real world.

Type: Lesson Plan

Rational vs Irrational:

Students will organize the set of real numbers and be able to identify when a number is rational or irrational. They will also learn the process of how to change a repeating decimal to its equivalent fraction.

Type: Lesson Plan

Non-Perfect Square Root Approximations:

Students will learn to approximate non-perfect square roots as rational numbers. Understanding that irrational numbers can be approximated by rational numbers can assist students and their understanding of the real number system.

Type: Lesson Plan

Predicting the decimal equivalent for a fraction - terminating or repeating?:

This lesson encourages students to make an important discovery. Will a given fraction yield a terminating or repeating decimal? Discussion includes why knowing this is important. The lesson is structured to allow exploration, discovery, and summarization.

Type: Lesson Plan

It's Hip to Be (an Imperfect) Square!:

This lesson allows students to explore and estimate the values of imperfect squares, using perfect square anchors and number lines as resources. The conversations throughout the lesson will also emphasize that imperfect squares are irrational numbers that must be estimated to compare.

Type: Lesson Plan

Really! I'm Rational!:

In this lesson students will gain an understanding of how repeating decimals are converted into a ratio in the form of a over b by completing an exploration worksheet. They will conclude that any number which can be written in this form is called a rational number.

Type: Lesson Plan

Problem-Solving Tasks

Calculating the Square Root of 2:

This task is intended for instructional purposes so that students can become familiar and confident with using a calculator and understanding what it can and cannot do. This task gives an opportunity to work on the notion of place value (in parts [b] and [c]) and also to understand part of an argument for why the square root of 2 is not a rational number.

Type: Problem-Solving Task

Estimating Square Roots:

By definition, the square root of a number n is the number you square to get n. The purpose of this task is to have students use the meaning of a square root to find a decimal approximation of a square root of a non-square integer. Students may need guidance in thinking about how to approach the task.

Type: Problem-Solving Task

Converting Decimal Representations of Rational Numbers to Fraction Representations:

Requires students to "convert a decimal expansion which repeats eventually into a rational number." Despite this choice of wording, the numbers in this task are rational numbers regardless of the choice of representation. For example, 0.333¯ and 1/3 are two different ways of representing the same number.

Type: Problem-Solving Task

Identifying Rational Numbers:

The task assumes that students can express a given repeating decimal as a fraction. Teachers looking for a task to fill in this background knowledge could consider the related task "Converting Decimal Representations of Rational Numbers to Fraction Representations".

Type: Problem-Solving Task

Irrational Numbers on the Number Line:

When students plot irrational numbers on the number line, it helps reinforce the idea that they fit into a number system that includes the more familiar integer and rational numbers. This is a good time for teachers to start using the term "real number line" to emphasize the fact that the number system represented by the number line is the real numbers. When students begin to study complex numbers in high school, they will encounter numbers that are not on the real number line (and are, in fact, on a "number plane"). This task could be used for assessment, or if elaborated a bit, could be used in an instructional setting.

Type: Problem-Solving Task

Calculating and Rounding Numbers:

In this task, students explore some important mathematical implications of using a calculator. Specifically, they experiment with the approximation of common irrational numbers such as pi (p) and the square root of 2 (v2) and discover how to properly use the calculator for best accuracy. Other related activities involve converting fractions to decimal form and a concrete example where rounding and then multiplying does not yield the same answer as multiplying and then rounding.

Type: Problem-Solving Task

Comparing Rational and Irrational Numbers:

Students are given a pair of numbers. They are asked to determine which is larger, and then justify their answer. The numbers involved are rational numbers and common irrational numbers, such p and square roots. This task can be used to either build or assess initial understandings related to rational approximations of irrational numbers.

Type: Problem-Solving Task

Student Center Activity

Edcite: Mathematics Grade 8:

Students can practice answering mathematics questions on a variety of topics. With an account, students can save their work and send it to their teacher when complete.

Type: Student Center Activity

Tutorials

Comparing Irrational Numbers With and Without a Calculator:

In this video, you will practice comparing an irrational number to a percent. First you will try it without a calculator. Then you will check your answer using a calculator.

Type: Tutorial

Approximating Square Roots to the Hundredths:

In this video, you will learn how to approximate a square root to the hundredths place.

Type: Tutorial

How to Approximate Square Roots:

In this video, you will practice approximating square roots of numbers that are not perfect squares. You will find the perfect square below and above to approximate the value of the square root between two whole numbers.

Type: Tutorial

Classifying Numbers:

In this tutorial, you will practice classifying numbers as whole numbers, integers, rational numbers, and irrational numbers.

Type: Tutorial

An introduction to rational and irrational numbers:

Students will learn the difference between rational and irrational numbers.

Type: Tutorial

Converting a fraction to a repeating decimal:

Students will learn how to convert a fraction into a repeating decimal. Students should know how to use long division before starting this tutorial.

Type: Tutorial

Video/Audio/Animation

Irrational Numbers:

Although the Greeks initially thought all numeric quantities could be represented by the ratio of two integers, i.e. rational numbers, we now know that not all numbers are rational. How do we know this?

Type: Video/Audio/Animation

Student Resources

Vetted resources students can use to learn the concepts and skills in this topic.

Problem-Solving Tasks

Calculating the Square Root of 2:

This task is intended for instructional purposes so that students can become familiar and confident with using a calculator and understanding what it can and cannot do. This task gives an opportunity to work on the notion of place value (in parts [b] and [c]) and also to understand part of an argument for why the square root of 2 is not a rational number.

Type: Problem-Solving Task

Estimating Square Roots:

By definition, the square root of a number n is the number you square to get n. The purpose of this task is to have students use the meaning of a square root to find a decimal approximation of a square root of a non-square integer. Students may need guidance in thinking about how to approach the task.

Type: Problem-Solving Task

Converting Decimal Representations of Rational Numbers to Fraction Representations:

Requires students to "convert a decimal expansion which repeats eventually into a rational number." Despite this choice of wording, the numbers in this task are rational numbers regardless of the choice of representation. For example, 0.333¯ and 1/3 are two different ways of representing the same number.

Type: Problem-Solving Task

Identifying Rational Numbers:

The task assumes that students can express a given repeating decimal as a fraction. Teachers looking for a task to fill in this background knowledge could consider the related task "Converting Decimal Representations of Rational Numbers to Fraction Representations".

Type: Problem-Solving Task

Irrational Numbers on the Number Line:

When students plot irrational numbers on the number line, it helps reinforce the idea that they fit into a number system that includes the more familiar integer and rational numbers. This is a good time for teachers to start using the term "real number line" to emphasize the fact that the number system represented by the number line is the real numbers. When students begin to study complex numbers in high school, they will encounter numbers that are not on the real number line (and are, in fact, on a "number plane"). This task could be used for assessment, or if elaborated a bit, could be used in an instructional setting.

Type: Problem-Solving Task

Comparing Rational and Irrational Numbers:

Students are given a pair of numbers. They are asked to determine which is larger, and then justify their answer. The numbers involved are rational numbers and common irrational numbers, such p and square roots. This task can be used to either build or assess initial understandings related to rational approximations of irrational numbers.

Type: Problem-Solving Task

Student Center Activity

Edcite: Mathematics Grade 8:

Students can practice answering mathematics questions on a variety of topics. With an account, students can save their work and send it to their teacher when complete.

Type: Student Center Activity

Tutorials

Comparing Irrational Numbers With and Without a Calculator:

In this video, you will practice comparing an irrational number to a percent. First you will try it without a calculator. Then you will check your answer using a calculator.

Type: Tutorial

Approximating Square Roots to the Hundredths:

In this video, you will learn how to approximate a square root to the hundredths place.

Type: Tutorial

How to Approximate Square Roots:

In this video, you will practice approximating square roots of numbers that are not perfect squares. You will find the perfect square below and above to approximate the value of the square root between two whole numbers.

Type: Tutorial

Classifying Numbers:

In this tutorial, you will practice classifying numbers as whole numbers, integers, rational numbers, and irrational numbers.

Type: Tutorial

An introduction to rational and irrational numbers:

Students will learn the difference between rational and irrational numbers.

Type: Tutorial

Converting a fraction to a repeating decimal:

Students will learn how to convert a fraction into a repeating decimal. Students should know how to use long division before starting this tutorial.

Type: Tutorial

Video/Audio/Animation

Irrational Numbers:

Although the Greeks initially thought all numeric quantities could be represented by the ratio of two integers, i.e. rational numbers, we now know that not all numbers are rational. How do we know this?

Type: Video/Audio/Animation

Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this topic.

Problem-Solving Tasks

Calculating the Square Root of 2:

This task is intended for instructional purposes so that students can become familiar and confident with using a calculator and understanding what it can and cannot do. This task gives an opportunity to work on the notion of place value (in parts [b] and [c]) and also to understand part of an argument for why the square root of 2 is not a rational number.

Type: Problem-Solving Task

Estimating Square Roots:

By definition, the square root of a number n is the number you square to get n. The purpose of this task is to have students use the meaning of a square root to find a decimal approximation of a square root of a non-square integer. Students may need guidance in thinking about how to approach the task.

Type: Problem-Solving Task

Converting Decimal Representations of Rational Numbers to Fraction Representations:

Requires students to "convert a decimal expansion which repeats eventually into a rational number." Despite this choice of wording, the numbers in this task are rational numbers regardless of the choice of representation. For example, 0.333¯ and 1/3 are two different ways of representing the same number.

Type: Problem-Solving Task

Identifying Rational Numbers:

The task assumes that students can express a given repeating decimal as a fraction. Teachers looking for a task to fill in this background knowledge could consider the related task "Converting Decimal Representations of Rational Numbers to Fraction Representations".

Type: Problem-Solving Task

Irrational Numbers on the Number Line:

When students plot irrational numbers on the number line, it helps reinforce the idea that they fit into a number system that includes the more familiar integer and rational numbers. This is a good time for teachers to start using the term "real number line" to emphasize the fact that the number system represented by the number line is the real numbers. When students begin to study complex numbers in high school, they will encounter numbers that are not on the real number line (and are, in fact, on a "number plane"). This task could be used for assessment, or if elaborated a bit, could be used in an instructional setting.

Type: Problem-Solving Task

Calculating and Rounding Numbers:

In this task, students explore some important mathematical implications of using a calculator. Specifically, they experiment with the approximation of common irrational numbers such as pi (p) and the square root of 2 (v2) and discover how to properly use the calculator for best accuracy. Other related activities involve converting fractions to decimal form and a concrete example where rounding and then multiplying does not yield the same answer as multiplying and then rounding.

Type: Problem-Solving Task

Comparing Rational and Irrational Numbers:

Students are given a pair of numbers. They are asked to determine which is larger, and then justify their answer. The numbers involved are rational numbers and common irrational numbers, such p and square roots. This task can be used to either build or assess initial understandings related to rational approximations of irrational numbers.

Type: Problem-Solving Task