Course Standards
General Course Information and Notes
General Notes
Special Note. Pre-IB courses have been created by individual schools or school districts since before the MYP started. These courses mapped backwards the Diploma Programme (DP) to prepare students as early as age 14. The IB was never involved in creating or approving these courses. The IB acknowledges that it is important for students to receive preparation for taking part in the DP, and that preparation is the MYP. The IB designed the MYP to address the whole child, which, as a result, has a very different philosophical approach that aims at educating all students aged 11-16. Pre-IB courses usually deal with content, with less emphasis upon the needs of the whole child or the affective domain than the MYP. A school can have a course that it calls “pre-IB” as long as it makes it clear that the course and any supporting material have been developed independently of the IB. For this reason, the school must name the course along the lines of, for example, the “Any School pre-IB course”.
The IB does not recognize pre-IB courses or courses labeled IB by different school districts which are not an official part of the IBDP or IBCC curriculum. Typically, students enrolled in grade 9 or 10 are not in the IBDP or IBCC programmes.
https://ibanswers.ibo.org/app/answers/detail/a_id/5414/kw/pre-ib. Florida’s Pre-IB courses should only be used in schools where MYP is not offered in order to prepare students to enter the IBDP. Teachers of Florida’s Pre-IB courses should have undergone IB training in order to ensure seamless articulation for students within the subject area.
Honors and Advanced Level Course Note: Advanced courses require a greater demand on students through increased academic rigor. Academic rigor is obtained through the application, analysis, evaluation, and creation of complex ideas that are often abstract and multi-faceted. Students are challenged to think and collaborate critically on the content they are learning. Honors level rigor will be achieved by increasing text complexity through text selection, focus on high-level qualitative measures, and complexity of task. Instruction will be structured to give students a deeper understanding of conceptual themes and organization within and across disciplines. Academic rigor is more than simply assigning to students a greater quantity of work.
English Language Development ELD Standards Special Notes Section:
Teachers are required to provide listening, speaking, reading and writing instruction that allows English language learners (ELL) to communicate information, ideas and concepts for academic success in the content area of Science. For the given level of English language proficiency and with visual, graphic, or interactive support, students will interact with grade level words, expressions, sentences and discourse to process or produce language necessary for academic success The ELD standard should specify a relevant content area concept or topic of study chosen by curriculum developers and teachers which maximizes an ELL's need for communication and social skills. To access an ELL supporting document which delineates performance definitions and descriptors, please click on the following link: https://cpalmsmediaprod.blob.core.windows.net/uploads/docs/standards/eld/sc.pdf
General Information
- Honors
Educator Certifications
Equivalent Courses
Student Resources
Original Student Tutorials
Explore, identify, and describe chemical and physical changes in matter with this interactive tutorial.
This is part 2 of 2-part series, click HERE to view part 1.
Type: Original Student Tutorial
Explore and define matter, properties of matter, and the difference between physical and chemical properties in this interactive tutorial.
This is part 1 of 2-part series, click HERE to view part 2.
Type: Original Student Tutorial
Explore the history and development of the atomic model and characteristics of subatomic particles (protons, neutrons, electrons) in this interactive tutorial.
Type: Original Student Tutorial
Discover how Isaac Newton's background, talents, interests, and goals influenced his groundbreaking work in this interactive tutorial.
This is part 4 in a 4-part series. Click below to explore the other tutorials in the series.
- Part 1: Discovering Newton's First Law of Motion: On the Soccer Pitch
- Part 2: Discovering Newton’s Second Law of Motion: On the Softball Diamond
- Part 3: Discovering Newton’s Third Law of Motion: On the Basketball Court
Type: Original Student Tutorial
Discover why some reactions leave you feeling warmer while others leave you feeling cooler in this interactive tutorial.
This is part 1 in a two-part series. Click to open Part 2 on endothermic and exothermic phase changes.
Type: Original Student Tutorial
Explore the differences between endothermic and exothermic phase changes in this interactive tutorial.
This is part 2 in a two-part series. Click to open Part 1 on endothermic and exothermic reactions.
Type: Original Student Tutorial
Learn how scientists measure viral spread and use this information to make recommendations for the public in this interactive tutorial.
Type: Original Student Tutorial
Learn how to identify different sources of scientific claims and to evaluate their reliability in this interactive tutorial.
Type: Original Student Tutorial
See how data are interpreted to better understand the reproductive strategies taken by sea anemones with this interactive tutorial.
Type: Original Student Tutorial
Examine field sampling strategies used to gather data and avoid bias in ecology research. This interactive tutorial features the CPALMS Perspectives video .
Type: Original Student Tutorial
Explore intermolecular bonding and attractive forces in this interactive tutorial.
Type: Original Student Tutorial
Lesson Plans
This lesson's primary focus is to introduce high school students to the concept of Elasticity, which is one of the fundamental concepts in the understanding of the physics of deformation in solids. The main learning objectives are: (1) To understand the essential concept of Elasticity and be able to distinguish simple solids objects based on degree and extent of their elastic properties; (2) To appreciate the utility of the elastic force vs. deformation curve through experiments; (3) To be aware of potential sources of error present in such experiments and identify corrective measures; and (4) To appreciate the relevance of Elasticity in practical applications.
Type: Lesson Plan
This BLOSSOMS lesson discusses Carbon Dioxide, and its impact on climate change. The main learning objective is for students to become more familiar with human production of Carbon Dioxide gas, as well as to gain an awareness of the potential for this gas to effect the temperature of Earth’s atmosphere. This lesson should take about an hour to complete. In order to complete the lesson, the teacher will need: printed copies of signs representing the different products and processes that take place in the carbon cycle (included), samples of matter that represent those products, handouts for the students to create a graphic of the carbon cycle (included) and graph paper or graphing software for students to create graphs. In the breaks of this BLOSSOMS lesson, students will be creating models of the carbon cycle as well as observing experiments and analyzing data from them. It is hoped that this lesson will familiarize students with ways in which carbon moves through our environment and provide them with some personal connection to the impact that an increased concentration of CO2 can have on air temperature. The goal is to spark their interest and hopefully to encourage them to ask and investigate more questions about the climate.
Type: Lesson Plan
Perspectives Video: Experts
Explore how pendulums show the transformation of gravitational potential energy to kinetic energy and back with Dr. Simon Capstick in this engaging video. Don't miss his broken-nose defying test of the physics with a bowling ball pendulum.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Expert
Keep an eye on pH as you learn about what makes acids and bases.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Expert
Do you know everything about protons? Are you positive?
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Expert
Learn more about the atomic model and antimatter!
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Expert
Don't overreact when this chemist describes physical and chemical changes that you can observe in your own kitchen!
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Expert
Plants need visible light, just not all of it. Learn how space plants and their lights strive for efficiency.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Expert
Perspectives Video: Professional/Enthusiasts
Why can't you put Ethanol fuel in a boat motor?
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
Learn how molecules have the potential to be polar, but not all are.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
If you want to understand the atom, you'll need a lot of energy. Learn how physicists use high energy light and electrons to study atomic structure.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
A welder wields a plasma torch to cut solid metal like a hot knife through butter. It's one-stop shopping to see all four states of matter.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
An archaeologist explains how he is using x-rays to reconstruct a nineteenth-century battle!
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
Archaeologists can see underground trends before everyone else with ground penetrating radar (GPR).
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
<p>Hydrogen is used to launch spacecraft, but accidental fires are difficult to see. Learn about the physics of these fires and how we detect them.</p>
Type: Perspectives Video: Professional/Enthusiast
Text Resource
This web site features an interactive periodic chart that provides information on the elements, including a description, physical and thermal properties, abundance, isotopes, ionization energy, the element's discoverer, translations of element names into several languages, and bibliographic information on research-and-development publications involving the element. Additional information includes technical information and information on manufactured products for elemental metals, metallic compounds, and ceramic and crystalline products. The American Elements company manufactures engineered and advanced material products.
Type: Text Resource
Tutorials
A hydrogen bond is the electromagnetic attractive interaction between polar molecules in which hydrogen is bound to a highly electronegative atom, such as nitrogen, oxygen, or fluorine. This tutorial will help the learner understand how hydrogen bonds form between the molecules.
Type: Tutorial
Every day, we are bombarded by attention grabbing headlines that promise miracle cures to all of our ailments -- often backed up by a "scientific study." But what are these studies, and how do we know if they are reliable? David H. Schwartz dissects two types of studies that scientists use, illuminating why you should always approach the claims with a critical eye.
Type: Tutorial
This tutorial will help the learners to understand the molecular structure of the water molecule, its inter- and intra-molecular bonds, and the formation of hydroxide ions.
Type: Tutorial
This resource explores the electromagnetic spectrum and waves by allowing the learner to observe the refraction of light as it passes from one medium to another, study the relation between refraction of light and the refractive index of the medium, select from a list of materials with different refractive indicecs, and change the light beam from white to monochromatic and observe the difference.
Type: Tutorial
This resource explains how a solar cell converts light energy into electrical energy. The user will also learn about the different components of the solar cell and observe the relationship between photon intensity and the amount of electrical energy produced.
Type: Tutorial
- Explore the relationship between wavelength, frequency, amplitude and energy of an electromagnetic wave
- Compare the characteristics of waves of different wavelengths
Type: Tutorial
Video/Audio/Animations
With an often unexpected outcome from a simple experiment, students can discover the factors that cause and influence thermohaline circulation in our oceans. In two 45-minute class periods, students complete activities where they observe the melting of ice cubes in saltwater and freshwater, using basic materials: clear plastic cups, ice cubes, water, salt, food coloring, and thermometers. There are no prerequisites for this lesson but it is helpful if students are familiar with the concepts of density and buoyancy as well as the salinity of seawater. It is also helpful if students understand that dissolving salt in water will lower the freezing point of water. There are additional follow up investigations that help students appreciate and understand the importance of the ocean's influence on Earth's climate.
Type: Video/Audio/Animation
Ocean explorer Robert Ballard gives a TED Talk relating to the mysteries of the ocean, and the importance of its continued exploration.
Type: Video/Audio/Animation
- Observe the photosynthesis mechanism in the plant
- Learn about the main chemical reactions that takes place during photosynthesis
- Learn how solar energy is converted into chemical energy
Type: Video/Audio/Animation
Students determine the number of protons, electrons, neutrons, and nucleons for different atoms
Type: Video/Audio/Animation
A collection of crossword puzzles that test the knowledge of students about some of the terms, processes, and classifications covered in science topics
Type: Video/Audio/Animation
This video contains a demo that can be performed to show that light consists of particles
It also uses Lasers with different wavelengths
Type: Video/Audio/Animation
- Differentiate between electron pair and molecular geometry
- Learn how to name electron pair and molecular geometries for molecules with up to six electron groups around the central atom
- Illustrate how electron pair repulsion affects bond angles
Type: Video/Audio/Animation
- Explain the concept of concentration
- Explain the effect of concentration changes on colors of solutions
- Demonstrate the effect of changing the amount of solute, or solvent, or both on the concentration of the solution
- Identify a saturated solution
Type: Video/Audio/Animation
In this National Science Foundation video and reading selection lab ecologist Janis Dickinson explains how she depends on citizen scientists to help her track the effects of disease, land-use change and environmental contaminants on the nesting success of birds.
Type: Video/Audio/Animation
Virtual Manipulatives
In this simulation, learn about the black body spectrum of the sun, a light bulb, an oven and the earth. Adjust the temperature to see how the wavelength and intensity of the spectrum are affected.
Type: Virtual Manipulative
Build an atom out of protons, neutrons, and electrons, and see how the element, charge, and mass change. Then play a game to test your ideas!
Type: Virtual Manipulative
This unique periodic table presents the elements in an interesting visual display. Select an element to find an image of the element, a description, history, and even an animation. Other chemical data is linked as a PDF file (requires Acrobat Reader).
Type: Virtual Manipulative
Precipitation reactions occur when cations and anions of aqueous solutions combine to form an insoluble ionic solid, called a precipitate. This simulation explores systems for which precipitation reactions are possible.A precipitation reaction is controlled by the magnitude of the solubility product, solubility product constant and the concentrations of the ions in solution.
Type: Virtual Manipulative
Chemical equilibrium is the condition which occurs when the concentration of reactants and products participating in a chemical reaction exhibit no net change over time. This simulation shows a model of an equilibrium system for a uni-molecular reaction. The value for the equilibrium constant, K, can be set in the simulation, to observe the reaction reaching the constant.
Type: Virtual Manipulative
This virtual manipulative will help you understand the process of titration, which is a neutralization reaction that is performed in order to determine an unknown concentration of acid and base. With this simulation, you will be able to calculate the moles of the acid with the understanding that the moles of acid will be equal to the moles of base at the equivalence point.
Type: Virtual Manipulative
How did scientists figure out the structure of atoms without looking at them? Try out different models by shooting light at the atom. Check how the prediction of the model matches the experimental results.
Type: Virtual Manipulative
This virtual manipulative will help the students to understand how the light shines on a metal surface. Students will recognize a process called as photoelectric effect wherein light can be used to push electrons from the surface of a solid.
Some of the sample learning goals can be:
- Visualize and describe the photoelectric effect experiment.
- Predict the results of the experiment, when the intensity of light is changed and its effects on the current and energy of the electrons.
- Predict the results of the experiment, when the wavelength of the light is changed and its effects on the current and the energy of the electrons.
- Predict the results of the experiment, when the voltage of the light is changed and its effects on the current and energy of electrons.
Type: Virtual Manipulative
This virtual manipulative will allow you to produce light by bombarding atoms with electrons. You can also visualize how the characteristic spectra of different elements are produced, and configure your own element's energy states to produce light of different colors.
Other areas to investigate:
- Provide a basic design for a discharge lamp and explain the function of the different components.
- Explain the basic structure of an atom and relate it to the color of light produced by discharge lamps.
- Explain why discharge lamps emit only certain colors.
- Design a discharge lamp to emit any desired spectrum of colors.
Type: Virtual Manipulative
This virtual manipulative will allow you to watch a reaction proceed over time. You can vary temperature, barrier height, and potential energies to note how total energy affects reaction rate. You will be able to record concentrations and time in order to extract rate coefficients.
Additionally you can:
- Describe on a microscopic level, with illustrations, how reactions occur.
- Describe how the motion of reactant molecules (speed and direction) contributes to a reaction happening.
- Predict how changes in temperature, or use of a catalyst will affect the rate of a reaction.
- On the potential energy curve, identify the activation energy for forward and reverse reactions and the energy change between reactants and products.
- Form a graph of concentrations as a function of time, students should be able to identify when a system has reached equilibrium.
- Calculate a rate coefficient from concentration and time data.
- Determine how a rate coefficient changes with temperature.
- Compare graphs of concentration versus time to determine which represents the fastest or slowest rate.
Type: Virtual Manipulative
This virtual manipulative will allow you to explore what makes a reaction happen by colliding atoms and molecules. Design your own experiments with different reactions, concentrations, and temperatures. Recognize what affects the rate of a reaction.
Areas to Explore:
- Explain why and how a pinball shooter can be used to help understand ideas about reactions.
- Describe on a microscopic level what contributes to a successful reaction.
- Describe how the reaction coordinate can be used to predict whether a reaction will proceed or slow.
- Use the potential energy diagram to determine : The activation energy for the forward and reverse reactions; The difference in energy between reactants and products; The relative potential energies of the molecules at different positions on a reaction coordinate.
- Draw a potential energy diagram from the energies of reactants and products and activation energy.
- Predict how raising or lowering the temperature will affect a system in the equilibrium.
Type: Virtual Manipulative
This simulation will provide an insight into the properties of gases. You can explore the more advanced features which enables you to explore three physical situations: Hot Air Balloon (rigid open container with its own heat source), Rigid Sphere (rigid closed container), and Helium Balloon (elastic closed container).
Through this activity you can:
- Determine what causes the balloon, rigid sphere, and helium balloon to rise up or fall down in the box.
- Predict how changing a variable among Pressure, Volume, Temperature and number influences the motion of the balloons.
Type: Virtual Manipulative
In this simulation, explore the interactions between various combinations of two atoms. Specific features of the simulation allows you to see either the total force acting on the atoms or the individual attractive and repulsive forces.
Options for learning:
- Explain how attractive and repulsive forces govern the interaction between atoms.
- Describe the effect of potential well depth on atomic interactions.
- Describe the process of bonding between atoms in terms of energy.
Type: Virtual Manipulative
This virtual manipulative will help you investigate how Rutherford figured out the structure of the atom without being able to see it. This simulation will allow the you to explore the famous experiment in which Rutherford disproved the Plum Pudding model of the atom by observing alpha particles bouncing off atoms and determining that they must have a small core.
Further explorations of the tutorial could include:
- Describe the qualitative difference between scattering off positively charged nuclei and electrically neutral plum pudding atoms.
- For a charged nucleus, describe qualitatively how angle of deflection depends on: energy of incoming particle, impact parameters, and charge of target.
Type: Virtual Manipulative
This activity will allow you to practice balancing a chemical equation. You will have to make sure you are following the law of conservation of mass and recognize what can change to balance an equation.
You can:
- Balance a chemical equation.
- Recognize that the number of atoms of each element is conserved in a chemical reaction.
- Describe the difference between coefficients and subscripts in a chemical equation.
- Translate from symbolic to molecular representation.
Type: Virtual Manipulative
How do strong and weak acids differ? Use lab tools on your computer to find out! Dip the paper or the probe into solution to measure the pH, or put in the electrodes to measure the conductivity. Then see how concentration and strength affect pH. Can a weak acid solution have the same pH as a strong acid solution.
Some of the topics to investigate:
- Given acids or bases at the same concentration, demonstrate understanding of acid and base strength by 1. Relating the strength of an acid or base to the extent to which it dissociates in water. 2. Identifying all the molecules and ions that are present in a given acid or base solution. 3. Comparing the relative concentrations of molecules and ions in weak versus strong acid (or base) solutions. 4. Describing the similarities and differences between strong acids and weak acids or strong bases and weak bases.
- Demonstrate understanding of solution concentrated by: 1. Describing the similarities and differences between concentrated and dilute solutions. 2. Comparing the concentrations of all molecules and ions in concentrated versus dilute solutions of a particular acid or base.
- Describe how common tools (pH meter, conductivity, pH paper) help identify whether a solution is an acid or base and strong or weak and concentrated or dilute.
Type: Virtual Manipulative
This activity will help to investigate how a greenhouse gas affects the climate, or why the ozone layer is important. Using this simulation, explore how light interacts with molecules in our atmosphere.
Areas to explore:
- How light interacts with molecules in our atmosphere.
- Identify that absorption of light depends on the molecule and the type of light.
- Relate the energy of the light to the resulting motion.
- Identify that energy increases from microwave to ultraviolet.
- Predict the motion of a molecule based on the type of light it absorbs.
- Identify how the structure of a molecule affects how it interacts with light.
Type: Virtual Manipulative
This activity will allow you to make colorful concentrated and dilute solutions and explore how much light they absorb and transmit using a virtual spectrophotometer.
You can explore concepts in many ways including:
- Describe the relationships between volume and amount of solute to solution concentration.
- Explain qualitatively the relationship between solution color and concentration.
- Predict and explain how solution concentration will change for adding or removing: water, solute, and/or solution.
- Calculate the concentration of solutions in units of molarity (mol/L).
- Design a procedure for creating a solution of a given concentration.
- Identify when a solution is saturated and predict how concentration will change for adding or removing: water, solute, and/or solution.
- Describe the relationship between the solution concentration and the intensity of light that is absorbed/transmitted.
- Describe the relationship between absorbance, molar absorptivity, path length, and concentration in Beer's Law.
- Predict how the intensity of light absorbed/transmitted will change with changes in solution type, solution concentration, container width, or light source and explain why?
Type: Virtual Manipulative
Understanding molecular polarity by changing the electron-negativity of atoms in a molecule to see how it affects polarity. See how the molecule behaves in an electric field. Change the bond angle to see how shape affects polarity. See how it works for real molecules in 3D.
Some learning goals:
•predict bond polarity using electron-negativity values
•indicate polarity with a polar arrow or partial charges
•rank bonds in order of polarity
•predict molecular polarity using bond polarity and molecular shape
Type: Virtual Manipulative
Play with one or two pendulums and discover how the period of a simple pendulum depends on the length of the string, the mass of the pendulum bob, and the amplitude of the swing. It's easy to measure the period using the photogate timer. Students can vary friction and the strength of gravity.
- Design experiments to describe how variables affect the motion of a pendulum
- Use a photogate timer to determine quantitatively how the period of a pendulum depends on the variables you described
- Determine the gravitational acceleration of planet X
- Explain the conservation of Mechanical energy concept using kinetic energy and gravitational potential energy
- Describe energy chart from position or selected speeds
Type: Virtual Manipulative
Students will pump gas molecules to a box and see what happens as they change the volume, add or remove heat, change gravity, and more. Measure the temperature and pressure, and discover how the properties of the gas vary in relation to each other.
- Students can predict how changing a variable among pressure, volume, temperature and number influences other gas properties.
- Students can predict how changing temperature will affect the speed of molecules.
- Students can rank the speed of molecules in thermal equilibrium based on the relative masses of molecules.
Type: Virtual Manipulative
Explore pressure under and above water. See how pressure changes as one change fluids, gravity, container shapes, and volume.
With this simulation you can:
- Investigate how pressure changes in air and water.
- Discover how to change pressure.
- Predict pressure in a variety of situations.
Type: Virtual Manipulative
Students can test the pH of several substances and visualize hydronium, hydroxide, and water molecules in solution by concentration or the number of molecules. Students can add water to a given substance to see the effects it will have on the pH of that substance; or they can create their own custom substance.
Type: Virtual Manipulative
Watch different types of molecules form a solid, liquid, or gas. Add or remove heat and watch the phase change. Change the temperature or volume of a container and see a pressure-temperature diagram respond in real time.
Type: Virtual Manipulative
Learn about conservation of energy with a skater! Build tracks, ramps and jumps for the skater and view the kinetic energy, potential energy, thermal energy as he moves. You can adjust the amount of friction and mass. Measurement and graphing tools are built in.
Type: Virtual Manipulative
This virtual manipulative allows you to investigate various aspects of gases through virtual experimentation. From the site: Pump gas molecules to a box and see what happens as you change the volume, add or remove heat, change gravity, and more (open the box, change the molecular weight of the molecule). Measure the temperature and pressure, and discover how the properties of the gas vary in relation to each other.
Type: Virtual Manipulative