Help

M/J Comprehensive Science 3, Advanced   (#2002110)

Version for Academic Year:
Course Number: 2002110
Course Path:
Abbreviated Title: M/J COMP SCI 3 ADV
Course Length: Year (Y)
Course Attributes:
  • Class Size Core Required
  • Highly Qualified Teacher (HQT) Required
Course Level: 3
Course Status: Course Approved
Grade Level(s): 6,7,8

GENERAL NOTES

Laboratory investigations that include the use of scientific inquiry, research, measurement, problem solving, laboratory apparatus and technologies, experimental procedures, and safety procedures are an integral part of this course. The National Science Teachers Association (NSTA) recommends that at the middle school level, all students should have multiple opportunities every week to explore science laboratory investigations (labs). School laboratory investigations are defined by the National Research Council (NRC) as an experience in the laboratory, classroom, or the field that provides students with opportunities to interact directly with natural phenomena or with data collected by others using tools, materials, data collection techniques, and models (NRC, 2006, p. 3). Laboratory investigations in the middle school classroom should help all students develop a growing understanding of the complexity and ambiguity of empirical work, as well as the skills to calibrate and troubleshoot equipment used to make observations. Learners should understand measurement error; and have the skills to aggregate, interpret, and present the resulting data (NRC 2006, p. 77; NSTA, 2007).

Special Notes: 

Instructional Practices 
Teaching from a range of complex text is optimized when teachers in all subject areas implement the following strategies on a routine basis:

  1. Ensuring wide reading from complex text that varies in length.
  2. Making close reading and rereading of texts central to lessons.
  3. Emphasizing text-specific complex questions, and cognitively complex tasks, reinforce focus on the text and cultivate independence.
  4. Emphasizing students supporting answers based upon evidence from the text.
  5. Providing extensive research and writing opportunities (claims and evidence).

Science and Engineering Practices (NRC Framework for K-12 Science Education, 2010)

  • Asking questions (for science) and defining problems (for engineering).
  • Developing and using models.
  • Planning and carrying out investigations.
  • Analyzing and interpreting data.
  • Using mathematics, information and computer technology, and computational thinking.
  • Constructing explanations (for science) and designing solutions (for engineering).
  • Engaging in argument from evidence.
  • Obtaining, evaluating, and communicating information.


Additional content that may be included in the Grade 8 NAEP Science assessment includes:

  • Rocks and rock formations bear evidence of the minerals, materials, temperature/pressure conditions, and forces that created them. (SC.4.E.6.1 and SC.4.E.6.2)
  • Earth as a whole has a magnetic field that is detectable at the surface with a compass, with north and south poles and lines of force. (SC.912.P.10.16)
  • The Sun is the major source of energy for phenomena on Earth's surface. (SC.3.L.17.2; SC.3.E.5.2; SC.3.E.6.1; SC.4.P.10.4; SC.4.L.17.2)
  • Water, which covers the majority of Earth's surface, circulates through the crust, oceans, and atmosphere in what is known as the water cycle. (SC.5.E.7.1; SC.5.E.7.2; SC.5.E.7.6)
  • A tiny fraction of the light energy from the Sun is Earth's primary source of energy, heating Earth surfaces and providing the energy that results in wind, ocean currents, and storms.(SC.2.E.7.2; SC.3.E.6.1)
  • Following fertilization, cell division produces a small cluster of cells that then differentiate by appearance and function to form the basic tissues of an embryo. (SC.912.L.16.13)
  • Characteristics of organisms are influenced by heredity and environment. (SC.4.L.16.2 and SC.4.L.16.3)
  • Nuclear reactions take place in the Sun. (SC.912.P.10.10; SC.912.P.10.11)

The NAEP frameworks for Science may be accessed at http://www.nagb.org/publications/frameworks/science-09.pdf

English Language Development ELD Standards Special Notes Section:
Teachers are required to provide listening, speaking, reading and writing instruction that allows English language learners (ELL) to communicate information, ideas and concepts for academic success in the content area of Science. For the given level of English language proficiency and with visual, graphic, or interactive support, students will interact with grade level words, expressions, sentences and discourse to process or produce language necessary for academic success The ELD standard should specify a relevant content area concept or topic of study chosen by curriculum developers and teachers which maximizes an ELL's need for communication and social skills. To access an ELL supporting document which delineates performance definitions and descriptors, please click on the following link: http://www.cpalms.org/uploads/docs/standards/eld/SC.pdf

For additional information on the development and implementation of the ELD standards, please contact the Bureau of Student Achievement through Language Acquisition at sala@fldoe.org.

Additional Instructional Resources:
A.V.E. for Success Collection is provided by the Florida Association of School Administrators: http://www.fasa.net/4DCGI/cms/review.html?Action=CMS_Document&DocID=139. Please be aware that these resources have not been reviewed by CPALMS and there may be a charge for the use of some of them in this collection.

Integrate Florida Standards for Mathematical Practice (MP) as applicable.

  • MAFS.K12.MP.1.1 Make sense of problems and persevere in solving them.
  • MAFS.K12.MP.2.1 Reason abstractly and quantitatively.
  • MAFS.K12.MP.3.1 Construct viable arguments and critique the reasoning of others.
  • MAFS.K12.MP.4.1 Model with mathematics.
  • MAFS.K12.MP.5.1 Use appropriate tools strategically.
  • MAFS.K12.MP.6.1 Attend to precision.
  • MAFS.K12.MP.7.1 Look for and make use of structure.
  • MAFS.K12.MP.8.1 Look for and express regularity in repeated reasoning.