LAFS.1112.RST.3.9

Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible.
General Information
Subject Area: English Language Arts
Grade: 1112
Strand: Reading Standards for Literacy in Science and Technical Subjects 6-12
Idea: Level 3: Strategic Thinking & Complex Reasoning
Date Adopted or Revised: 12/10
Date of Last Rating: 02/14
Status: State Board Approved

Related Courses

This benchmark is part of these courses.
2000350: Anatomy and Physiology (Specifically in versions: 2014 - 2015, 2015 - 2022 (current), 2022 and beyond)
2000360: Anatomy and Physiology Honors (Specifically in versions: 2014 - 2015, 2015 - 2022 (current), 2022 and beyond)
2020910: Astronomy Solar/Galactic Honors (Specifically in versions: 2014 - 2015, 2015 - 2022 (current), 2022 and beyond)
2000330: Biology 2 Honors (Specifically in versions: 2014 - 2015, 2015 - 2018, 2018 - 2022 (current), 2022 and beyond)
2000370: Botany (Specifically in versions: 2014 - 2015, 2015 - 2022 (current), 2022 and beyond)
2003340: Chemistry 1 (Specifically in versions: 2014 - 2015, 2015 - 2022 (current), 2022 and beyond)
2003360: Chemistry 2 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022 (current), 2022 and beyond)
2000380: Ecology (Specifically in versions: 2014 - 2015, 2015 - 2022 (current), 2022 and beyond)
2001340: Environmental Science (Specifically in versions: 2015 - 2022 (current), 2022 and beyond)
2002480: Forensic Science 1 (Specifically in versions: 2014 - 2015, 2015 - 2017, 2017 - 2022 (current), 2022 and beyond)
2002490: Forensic Sciences 2 (Specifically in versions: 2014 - 2015, 2015 - 2017, 2017 - 2022 (current), 2022 and beyond)
2000440: Genetics Honors (Specifically in versions: 2014 - 2015, 2015 - 2022 (current), 2022 and beyond)
2002440: Integrated Science 3 (Specifically in versions: 2014 - 2015, 2015 - 2022 (current), 2022 and beyond)
2002450: Integrated Science 3 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022 (current), 2022 and beyond)
2000390: Limnology (Specifically in versions: 2014 - 2015, 2015 - 2018 (course terminated))
2002500: Marine Science 1 (Specifically in versions: 2014 - 2015, 2015 - 2022 (current), 2022 and beyond)
2002520: Marine Science 2 (Specifically in versions: 2014 - 2015, 2015 - 2022 (current), 2022 and beyond)
2002530: Marine Science 2 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022 (current), 2022 and beyond)
2003400: Nuclear Radiation (Specifically in versions: 2014 - 2015, 2015 - 2018 (course terminated))
2020710: Nuclear Radiation Honors (Specifically in versions: 2014 - 2015, 2015 - 2022 (current), 2022 and beyond)
2003380: Physics 1 (Specifically in versions: 2014 - 2015, 2015 - 2022 (current), 2022 and beyond)
2003390: Physics 1 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022 (current), 2022 and beyond)
2003410: Physics 2 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022 (current), 2022 and beyond)
2002540: Solar Energy Honors (Specifically in versions: 2014 - 2015, 2015 - 2022 (current), 2022 and beyond)
2002550: Solar Energy 2 Honors (Specifically in versions: 2014 - 2015, 2015 - 2018 (course terminated))
2000410: Zoology (Specifically in versions: 2014 - 2015, 2015 - 2022 (current), 2022 and beyond)
2002360: Experimental Science 3 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022 (current), 2022 and beyond)
2002370: Experimental Science 4 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022 (current), 2022 and beyond)
7920011: Access Chemistry 1 (Specifically in versions: 2014 - 2015, 2015 - 2018, 2018 and beyond (current))
2000510: Bioscience 2 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022 (current), 2022 and beyond)
2000520: Bioscience 3 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022 (current), 2022 and beyond)
2002445: Integrated Science 3 for Credit Recovery (Specifically in versions: 2014 - 2015, 2015 - 2020 (course terminated))
2003345: Chemistry 1 for Credit Recovery (Specifically in versions: 2014 - 2015, 2015 - 2022 (current), 2022 and beyond)
2003385: Physics 1 for Credit Recovery (Specifically in versions: 2014 - 2015, 2015 - 2020 (course terminated))
2003500: Renewable Energy 1 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022 (current), 2022 and beyond)
1501800: Florida’s Preinternational Baccalaureate Personal Fitness (Specifically in versions: 2014 - 2015, 2015 - 2019 (course terminated))
2003836: Florida's Preinternational Baccalaureate Physics 1 (Specifically in versions: 2015 and beyond (current))
2003838: Florida's Preinternational Baccalaureate Physics 2 (Specifically in versions: 2015 and beyond (current))
2001341: Environmental Science Honors (Specifically in versions: 2016 and beyond (current))

Related Access Points

Alternate version of this benchmark for students with significant cognitive disabilities.

Related Resources

Vetted resources educators can use to teach the concepts and skills in this benchmark.

Lesson Plans

Too Much of a Good Thing: Human Activities Overload Ecosystems with Nitrogen:

In this lesson, students will analyze an informational text intended to support reading in the content area. The article briefly summarizes the nitrogen cycle, then explains how human activities have impacted ecosystems through the increased release of nitrogen and explores potential solutions to alleviate the issues caused by excess nitrogen. A video is also presented which explores why Florida had a large-scale eutrophication event in 2016 and presents solutions and economic implications of the event. By reading, viewing, and synthesizing information from the article and video, students learn how excess nitrogen impacts aquatic ecosystems and the economy. Further, they will be able to provide suggestions to lessen our impact on these systems. This lesson includes a note-taking guide, text-dependent questions, a writing prompt, answer keys, and a writing rubric.

Type: Lesson Plan

The Dynamic Carbon Cycle:

In this lesson, students will analyze an informational text intended to support reading in the content area. The article explains the dynamic carbon cycle and how human activity contributes to global warming. A second related text builds on that knowledge to discuss the importance of Everglades mangroves as carbon "sinks." By reading and synthesizing both articles, students will learn not only about the specifics of the carbon cycle, but how it applies to Florida and the rest of the world. This lesson includes a note-taking guide, text-dependent questions, a writing prompt, answer keys, and a writing rubric.

Type: Lesson Plan

Distance and Displacement.:

  • In this lesson students, will be able to identify frames of reference and describe how they are used to measure motion.
  • Identify appropriate SI units for measuring distances.
  • Distinguish between distance and displacement.
  • Calculate displacement using vector addition.

Type: Lesson Plan

Momentum and the Law of Conservation of Momentum: A Student-Centered Lesson:

This is a largely self-paced unit for students to learn the basics of Momentum as well as the Law of Conservation of Momentum. Students complete two investigative exercises (one hands-on, the other virtual). They then are directed to read a website (or a textbook could be substituted) and take notes with the teacher"s support as needed. After taking their own notes, students complete a worksheet to practice calculations involving the Law of Conservation of Momentum. At the end of the unit, students take a traditional summative assessment with True/False, multiple-choice, and fill-in-the-blank questions along with a calculations section. Note that this lesson only covers the basics of linear momentum and does not include impulse or angular momentum.

Type: Lesson Plan

Searching for Evidence of Dark Energy:

This lesson is a differentiated approach to the concept of Dark Energy and the distribution of matter in our Universe. Students begin by simulating the expansion of the Universe by creating balloon Universes which can be inflated. Students are then assigned one of four articles according to reading ability. They read their articles and then form Jigsaw groups to share the information gleaned from the articles. Students are assessed through a writing assignment.

Type: Lesson Plan

Determining the Empirical Formula of Hydrates:

Students will apply the mole concept and the law of conservation of mass to determine the empirical formula of a hydrate. Students will also use data from their experiment to understand the concept of mole ratios, formulas and predicting products from reactions. Students will interpret formula representation of compounds and understand their percent composition.

Type: Lesson Plan

Lesson Study Resource Kit

Exploring Diversity and Evolution: A Lesson Study Resource Kit for grades 9-12:

This lesson study resource kit is designed to support lesson study teams in developing a unit of instruction for students in grades 9-12 on the topic of diversity and evolution.

Type: Lesson Study Resource Kit

Professional Development

Cultivating Literacy: Reading Skills and Standards:

Click "View Site" to open a full-screen version.

By the end of this module, teachers should be able to:

  • Name the key instructional shifts in English Language Arts and Literacy
  • Label the College and Career Readiness, also known as CCR, anchor standards for Reading
  • Use the language of the Reading Standards for Literacy in Science and Technical Subjects to identify what students should know and be able to do
  • Arrange and sequence the Reading Standards for Literacy in Science and Technical Subjects
  • Distinguish the changes in rigor as a Reading standard progresses from one grade band to the next

This is Module 1 of 4 in the series, "Literacy across the Content Areas: Reading and Writing to Build Content Knowledge."

Type: Professional Development

Text Resource

Text Resource: Too Much of a Good Thing: Human Activities Overload Ecosystems with Nitrogen:

This informational text resource is intended to support reading in the content area. Human activities, mainly the use of fertilizer, are overloading ecosystems with nitrogen. Nitrogen is a dynamic cycle that is mediated by bacteria. Humans have been contributing to the nitrogen cycle through synthetic nitrogen fixation. This has resulted in eutrophication of aquatic systems and greenhouse gas emissions. Methods to increase the efficiency of nitrogen fertilizer use are discussed.

Type: Text Resource

Tutorials

Speed of Light in Transparent Materials:

  • Study the relation between the speed of light and the refractive index of the medium it passes through.
  • Choose from a collection of materials with known refractive indices and obtain the speed of light as it passes through.
  • Learn why light-years are used as an astronomical measurement of distance.

Type: Tutorial

Refraction of Light:

This resource explores the electromagnetic spectrum and waves by allowing the learner to observe the refraction of light as it passes from one medium to another, study the relation between refraction of light and the refractive index of the medium, select from a list of materials with different refractive indicecs, and change the light beam from white to monochromatic and observe the difference.

Type: Tutorial

Human Eye Accommodation:

  • Observe how the eye's muscles change the shape of the lens in accordance with the distance to the object being viewed
  • Indicate the parts of the eye that are responsible for vision
  • View how images are formed in the eye

Type: Tutorial

Concave Spherical Mirrors:

  • Learn how a concave spherical mirror generates an image
  • Observe how the size and position of the image changes with the object distance from the mirror
  • Learn the difference between a real image and a virtual image
  • Learn some applications of concave mirrors

Type: Tutorial

Convex Spherical Mirrors:

  • Learn how a convex mirror forms the image of an object
  • Understand why convex mirrors form small virtual images
  • Observe the change in size and position of the image with the change in object's distance from the mirror
  • Learn some practical applications of convex mirrors

Type: Tutorial

Color Temperature in a Virtual Radiator:

  • Observe the change of color of a black body radiator upon changes in temperature
  • Understand that at 0 Kelvin or Absolute Zero there is no molecular motion

Type: Tutorial

Solar Cell Operation:

This resource explains how a solar cell converts light energy into electrical energy. The user will also learn about the different components of the solar cell and observe the relationship between photon intensity and the amount of electrical energy produced.

Type: Tutorial

Electromagnetic Wave Propagation:

  • Observe that light is composed of oscillating electric and magnetic waves
  • Explore the propagation of an electromagnetic wave through its electric and magnetic field vectors
  • Observe the difference in propagation of light of different wavelengths

Type: Tutorial

Geometrical Construction of Ray Diagrams:

  • Learn to trace the path of propagating light waves using geometrical optics
  • Observe the effect of changing parameters such as focal length, object dimensions and position on image properties
  • Learn the equations used in determining the size and locations of images formed by thin lenses

Type: Tutorial

Student Resources

Vetted resources students can use to learn the concepts and skills in this benchmark.

Tutorials

Refraction of Light:

This resource explores the electromagnetic spectrum and waves by allowing the learner to observe the refraction of light as it passes from one medium to another, study the relation between refraction of light and the refractive index of the medium, select from a list of materials with different refractive indicecs, and change the light beam from white to monochromatic and observe the difference.

Type: Tutorial

Human Eye Accommodation:

  • Observe how the eye's muscles change the shape of the lens in accordance with the distance to the object being viewed
  • Indicate the parts of the eye that are responsible for vision
  • View how images are formed in the eye

Type: Tutorial

Concave Spherical Mirrors:

  • Learn how a concave spherical mirror generates an image
  • Observe how the size and position of the image changes with the object distance from the mirror
  • Learn the difference between a real image and a virtual image
  • Learn some applications of concave mirrors

Type: Tutorial

Convex Spherical Mirrors:

  • Learn how a convex mirror forms the image of an object
  • Understand why convex mirrors form small virtual images
  • Observe the change in size and position of the image with the change in object's distance from the mirror
  • Learn some practical applications of convex mirrors

Type: Tutorial

Color Temperature in a Virtual Radiator:

  • Observe the change of color of a black body radiator upon changes in temperature
  • Understand that at 0 Kelvin or Absolute Zero there is no molecular motion

Type: Tutorial

Solar Cell Operation:

This resource explains how a solar cell converts light energy into electrical energy. The user will also learn about the different components of the solar cell and observe the relationship between photon intensity and the amount of electrical energy produced.

Type: Tutorial

Electromagnetic Wave Propagation:

  • Observe that light is composed of oscillating electric and magnetic waves
  • Explore the propagation of an electromagnetic wave through its electric and magnetic field vectors
  • Observe the difference in propagation of light of different wavelengths

Type: Tutorial

Geometrical Construction of Ray Diagrams:

  • Learn to trace the path of propagating light waves using geometrical optics
  • Observe the effect of changing parameters such as focal length, object dimensions and position on image properties
  • Learn the equations used in determining the size and locations of images formed by thin lenses

Type: Tutorial

Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this benchmark.