*For example, rewrite 0.62 as 62/100; describe a length as 0.62 meters; locate 0.62 on a number line diagram.*

**Subject Area:**Mathematics

**Grade:**4

**Domain-Subdomain:**Number and Operations - Fractions

**Cluster:**Level 1: Recall

**Cluster:**Understand decimal notation for fractions, and compare decimal fractions. (Major Cluster) -

Clusters should not be sorted from Major to Supporting and then taught in that order. To do so would strip the coherence of the mathematical ideas and miss the opportunity to enhance the major work of the grade with the supporting clusters.

**Date Adopted or Revised:**02/14

**Date of Last Rating:**02/14

**Status:**State Board Approved - Archived

**Assessed:**Yes

**Assessment Limits :**

Denominators are limited to 10 and 100. Decimal notation is limited to tenths and hundredths. Items may contain decimals or fractions greater than 1 and/or mixed numbers**Calculator :**No

**Context :**No context

**Test Item #:**Sample Item 1**Question:**Select all the fractions that are equivalent to 0.8.

**Difficulty:**N/A**Type:**MS: Multiselect

**Test Item #:**Sample Item 2**Question:**What is the value of in decimal form?

**Difficulty:**N/A**Type:**EE: Equation Editor

## Related Courses

## Related Access Points

## Related Resources

## Educational Games

## Formative Assessments

## Lesson Plans

## Original Student Tutorials

## Problem-Solving Tasks

## Tutorials

## Virtual Manipulative

## STEM Lessons - Model Eliciting Activity

Fourth graders will help Cookies and Treats find cost-effective and eco-friendly packaging for its cookies. Students will organize data and compare prices using decimal notation in order to develop a procedure for choosing packaging for cookies. Students will use multiplication and division of whole numbers to plan for how many packages to order.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

This lesson asks students to recommend which cookie the owners of The Cookie Jar should add to their menu. Before they make their decision, the students have to convert decimal notation and fractions with denominators 10 and 100 to fractions with like denominators. Then they will be able to see exactly how many people voted for each cookie and they can factor in that information along with additional cookie facts to make their final recommendation.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

In this MEA, students will convert fractions into decimals and then compare the decimals to decide which donut a donut shop should add to their menu.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

This is a Model Eliciting Activity (MEA) activity which requires the students to convert fractions to decimals, order the decimals, and then design a process for ranking the classrooms from quantitative and qualitative data and then re-test their procedure on a new set of data. Ultimately, the students have to write a letter explaining and supporting the step-by-step process they used.

In this MEA, students will work in collaborative groups to solve multi-step problems with whole numbers, fractions, decimals and percent by using different mathematical operations. The students will be asked to assist an ice cream shop owner, who is planning a promotional program "Flavor of the Month," to rank the ice cream flavors based on the data provided. Students will need to read a data table, rank the flavors, convert the fraction amount to a percent and decimal and per serving costs to a decimal as well. A twist is added to the problem when one of the flavors is too expensive to make because of seasonal availability but two new flavors are added to be calculated. An additional twist is given by adding an adult survey to the second data table. The students will need to recalculate the new percent and decimals for the additional flavors.

## MFAS Formative Assessments

Students are asked to use benchmark decimals to place four fractions on a number line.

Students are asked to use benchmark fractions to place four decimals on a number line.

## Original Student Tutorials Mathematics - Grades K-5

Help Rich escape Deci Land by learning how to write decimals that are related to fractions with denominators of 10 and 100 in this interactive tutorial.

Learn how to locate decimals on a number line and compare decimals to save the Decis from a wizard's spell in this interactive tutorial.

## Student Resources

## Original Student Tutorials

Learn how to locate decimals on a number line and compare decimals to save the Decis from a wizard's spell in this interactive tutorial.

Type: Original Student Tutorial

Help Rich escape Deci Land by learning how to write decimals that are related to fractions with denominators of 10 and 100 in this interactive tutorial.

Type: Original Student Tutorial

## Educational Games

Test your fraction skills by answering questions on this site. This quiz asks you to simplify fractions, convert fractions to decimals and percentages, and answer algebra questions involving fractions. You can even choose difficulty level, question types, and time limit.

Type: Educational Game

This interactive Flash applet has students match fractions with their equivalent one- or two-place decimals. Students have a chance to correct errors until all matches are made.

Type: Educational Game

## Problem-Solving Tasks

The purpose of this task is for students to finish the equations to make true statements. Parts (a) and (b) have the same solution, which emphasizes that the order in which we add doesn't matter (because addition is commutative), while parts (c) and (d) emphasize that the position of a digit in a decimal number is critical. The student must really think to encode the quantity in positional notation. In parts (e), (f), and (g), the base-ten units in 14 hundredths are bundled in different ways. In part (e), "hundredths" are thought of as units: 14 things = 10 things + 4 things. Part (h) addresses the notion of equivalence between hundredths and tenths.

Type: Problem-Solving Task

The purpose of this task is for students to show they understand the connection between fraction and decimal notation by writing the same numbers both ways. Comparing and contrasting the two solutions shown below shows why decimal notation can be confusing. The first solution shows the briefest way to represent each number, and the second solution makes all the zeros explicit.

Type: Problem-Solving Task

The purpose of this task is to help students gain a better understanding of fractions through the use of dimes and pennies.

Type: Problem-Solving Task

## Tutorials

In this Khan Academy video decimals are written and spoken in words.

Type: Tutorial

The Khan Academy video uses grid diagrams and number-line representations to say and write equivalent decimals and fractions.

Type: Tutorial

The Khan Academy video illustrates how to determine and write the decimal represented by shaded grids.

Type: Tutorial

This tutorial for student audiences will provide a basic introduction to decimals. The tutorial presents a decimal as another way to represent a fraction. Students will be able to navigate the teaching portion of the tutorial at their own pace and test their understanding after each step of the lesson with a "Try This" section. The "Try This" section will monitor students answers and self-check by a right answer gaining an orange circle and a wrong answer graying out. Some "Try This" sections will read the decimal to the students as well.

Type: Tutorial

## Parent Resources

## Problem-Solving Tasks

The purpose of this task is for students to finish the equations to make true statements. Parts (a) and (b) have the same solution, which emphasizes that the order in which we add doesn't matter (because addition is commutative), while parts (c) and (d) emphasize that the position of a digit in a decimal number is critical. The student must really think to encode the quantity in positional notation. In parts (e), (f), and (g), the base-ten units in 14 hundredths are bundled in different ways. In part (e), "hundredths" are thought of as units: 14 things = 10 things + 4 things. Part (h) addresses the notion of equivalence between hundredths and tenths.

Type: Problem-Solving Task

The purpose of this task is for students to show they understand the connection between fraction and decimal notation by writing the same numbers both ways. Comparing and contrasting the two solutions shown below shows why decimal notation can be confusing. The first solution shows the briefest way to represent each number, and the second solution makes all the zeros explicit.

Type: Problem-Solving Task

The purpose of this task is to help students gain a better understanding of fractions through the use of dimes and pennies.

Type: Problem-Solving Task

## Tutorial

This tutorial for student audiences will provide a basic introduction to decimals. The tutorial presents a decimal as another way to represent a fraction. Students will be able to navigate the teaching portion of the tutorial at their own pace and test their understanding after each step of the lesson with a "Try This" section. The "Try This" section will monitor students answers and self-check by a right answer gaining an orange circle and a wrong answer graying out. Some "Try This" sections will read the decimal to the students as well.

Type: Tutorial