**Subject Area:**Science

**Grade:**6

**Body of Knowledge:**Physical Science

**Idea:**Level 3: Strategic Thinking & Complex Reasoning

**Big Idea:**Motion of Objects -

A. Motion is a key characteristic of all matter that can be observed, described, and measured.

B. The motion of objects can be changed by forces.

**Date Adopted or Revised:**02/08

**Date of Last Rating:**05/08

**Status:**State Board Approved

**Assessed:**Yes

## Related Courses

## Related Access Points

## Related Resources

## Lesson Plans

## Original Student Tutorials

## Problem-Solving Task

## Teaching Idea

## STEM Lessons - Model Eliciting Activity

In this Model Eliciting Activity (MEA), students will learn how to use very different pieces of information and data to select the best "Bottymals" for a company that wants to manufacture them and place them on the market. The MEA includes information about animal/insect anatomy (locomotion), manufacturing materials used in robotics, and physical science of the 6th grade level. Extensive information is provided to students, thus pre-requisites are minimal.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Students are asked to create a map for a family about to go on a family trip to Magical World Park. All of the family members have wants that they would like the itinerary to have in order to ensure that the family has a great time at the park. Students are asked to look at a map to decide what parts of the park to go to first that allow the family to have everything they desire for their family trip. As a vacation planner working for our company, the students will be asked to create an itinerary for the family. The students will then receive an approval from the family, but now have decided to have the entire family meet up for the annual family reunion. Will the itinerary still work or will the student need to tweak some of their previous thinking?

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

The main problem students will need to solve is helping Lily Rae Wridenhoud find a route that will afford her the quickest time, least distance and highest customer satisfaction rating. Students will be given a map of all the streets leading around the neighborhood and customer rating (smiley faces). Students will need to use a ruler to figure out distances as well as decide elevation numbers on the topographic map. Then they will write out the route they have chosen to give Lily, and write a short explanation as to why this is the quickest and least distance traveled. Students will then be asked to look over their findings and be informed that some of the old clients have canceled the paper delivery and a few new paper clients have signed on. Does their new route still fit their findings?

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

## Original Student Tutorials Science - Grades K-8

Begin an exploration of kinematics to describe linear motion. You'll observe a motorized dune buggy, describe its motion qualitatively, and identify time values associated with its motion in the interactive lesson.

Continue an exploration of kinematics to describe linear motion by focusing on position-time measurements from the motion trial in part 1. In this interactive tutorial, you'll identify position measurements from the spark tape, analyze a scatterplot of the position-time data, calculate and interpret slope on the position-time graph, and make inferences about the dune buggy’s average speed

Describe the average velocity of a dune buggy using kinematics in this interactive tutorial. You'll calculate displacement and average velocity, create and analyze a velocity vs. time scatterplot, and relate average velocity to the slope of position vs. time scatterplots.

This is part 3 of 3 in a series that mirrors inquiry-based, hands-on activities from our popular workshops.

- Click to open The Notion of Motion, Part 1 - Time Measurements
- Click HERE to open The Notion of Motion, Part 2 - Position vs Time

Learn to measure, graph, and interpret the relationship of distance over time of a sea turtle moving at a constant speed.

## Student Resources

## Original Student Tutorials

Describe the average velocity of a dune buggy using kinematics in this interactive tutorial. You'll calculate displacement and average velocity, create and analyze a velocity vs. time scatterplot, and relate average velocity to the slope of position vs. time scatterplots.

This is part 3 of 3 in a series that mirrors inquiry-based, hands-on activities from our popular workshops.

- Click to open The Notion of Motion, Part 1 - Time Measurements
- Click HERE to open The Notion of Motion, Part 2 - Position vs Time

Type: Original Student Tutorial

Continue an exploration of kinematics to describe linear motion by focusing on position-time measurements from the motion trial in part 1. In this interactive tutorial, you'll identify position measurements from the spark tape, analyze a scatterplot of the position-time data, calculate and interpret slope on the position-time graph, and make inferences about the dune buggy’s average speed

Type: Original Student Tutorial

Begin an exploration of kinematics to describe linear motion. You'll observe a motorized dune buggy, describe its motion qualitatively, and identify time values associated with its motion in the interactive lesson.

Type: Original Student Tutorial

Learn to measure, graph, and interpret the relationship of distance over time of a sea turtle moving at a constant speed.

Type: Original Student Tutorial

## Parent Resources

## Problem-Solving Task

Students will measure the speed of a longshore drift current using a tennis ball. Students will plot the distance the ball was carried versus time in order to measure the current's velocity.

Type: Problem-Solving Task