- Follow agreed-upon rules for discussions (e.g., gaining the floor in respectful ways, listening to others with care, speaking one at a time about the topics and texts under discussion).
- Build on others’ talk in conversations by linking their comments to the remarks of others.
- Ask for clarification and further explanation as needed about the topics and texts under discussion.
Related Courses
Related Access Points
Related Resources
Lesson Plans
STEM Lessons - Model Eliciting Activity
In this Model Eliciting Activity, MEA, the students will work in teams to use data to determine which classroom pet teachers should get for their classrooms based on several characteristics.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx
Students will help choose the best value of connecting blocks by developing a procedure based on the following criteria: color, ease of use, variety of blocks, and number of blocks per set. They will reassess these blocks during the twist incorporating a new type of block. They will need to calculate the total costs of each set of blocks.
Students may arrange the criteria based on their teams’ interpretation of most important to least important. Students may have to make trade-offs based on these interpretations (i.e., price versus the other criteria in the data sets).
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.
In this Model-Eliciting Activity (MEA), Big Beach Travels has selected the students to help them choose the best month for their client to visit Daytona Beach. Students will use rainfall and temperature information to inform their decisions and to rank the other months from best time to visit to worst time to visit. In a twist, they will be told that the clients changed their minds and, instead, would like to travel to Ft. Lauderdale and see a concert on the beach while they are there. Students must use the same data for Ft. Lauderdale as well as event information to determine the best month to visit and rank the other months in order from best time to visit to worst.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx
Students will determine which pizza place should be used to cater parties at the Birthday Parties 'R' Us facility given a set of data. They will create a procedure for determining the best pizza place, write an explanation about their procedure, and present their recommendations to the class.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.
In this model eliciting activity (MEA), students are asked to help the International Olympic Committee rank prospective host cities for upcoming Summer Olympic Games. Students are provided with data about a list of applicant cities and then must rank the cities and write a proposal to the IOC explaining their rankings. At the end of the MEA, the students will write an opinion piece for the International Olympic Committee that tells their final decision about which city should be the next host of the Summer Olympic Games.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx
In this Model Eliciting Activity, MEA, students will devise a plan for ranking, and justify it, in order to choose the best class pet. Students will use problem-solving skills, interpret data presented in tables, add two-digit numbers, compare two and three-digit numbers, and create bar graphs.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx
In this Model Eliciting Activity, MEA, students are asked to decide which factors are important in choosing the best cookie in a cookie contest. Students will take on the role of cookie critics to provide feedback to a teacher whose grade level is deciding which cookie to use for a fundraiser. They will rank order their choices from the best to worst cookie. Students will provide a detailed written explanation for how they decided to rank factors and their solution. They will show their work while adding up to 4 two-digit numbers to calculate the total number of votes.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx
In teams, students will make a decision on how to select the best crayons for a school supply store based on various crayon characteristics such as cost, transfer to paper, vibrancy of color, color residue, and breakage.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.
In this Model-Eliciting Activity (MEA), students will analyze weather conditions in a team to determine which time of the year and which city would be the best to visit based on weather patterns from season to season and day to day in Florida.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx
This Model-Eliciting Activity (MEA) is designed for a second grade level. Students will be working in small groups to figure out what companies to hire for the art gallery to have a successful charity event. The students will be evaluating criteria such as bands for the event, caterers, and artists. Students will need to add money to stay within a budget. They will write their procedure for making their selections.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.
In this Model Eliciting Activity, MEA, The Give A Cheer Yearbook Committee needs the students' assistance to determine the best company to purchase the school yearbooks. Students will need to consider the cost, tax, and delivery time in their decision. In a “twist,” students are given additional information about shipping cost and are asked to determine if their procedure for ranking should change.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx
In this Model Eliciting Activity (MEA), Jack traded the family cow for some magic beans. The woman traded Jack the beans, said that if he planted the beans in the best soil, something magical would happen. Students will examine the properties of different types of soils to recommend the best soil for Jack to use to plant his beans. They will ask and answer questions about informational text on soils from various websites. They will create a procedure for ranking soils and will present their recommendations to the class.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx
Students use problem solving skills, data sets presented in a chart, two and three digit addition, writing skills and money skills to determine which brand of jelly beans they would like to purchase. The jelly beans differ in taste, quantity, and cost. The students must then check their procedure to determine if it will work when given an additional piece of data.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.
This MEA (Model Eliciting Activity) is written at a second grade level. In teams of 3-4, students will help determine which Mac-N-Chz Carrot Grocery should stock on their shelves by reviewing sets of data provided on taste, healthiness, cost and cheese content.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx
Collaboration is key! In this MEA lesson, students will have the opportunity to work in collaborative groups to decide what items to include inside a guest goodie bag. The students will be able to interpret data from a table chart, create a bar graph, present their decisions orally in teams, and write an extension letter.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx
In this Model Eliciting Activity, MEA, students have been selected by the cafeteria manager to help rank healthy meal options that have been proposed to be added to the school cafeteria. The students will use information about the food and drink included in the meal, total calories, sodium content, calories from saturated fat, and calories from sugar to come up with a procedure for ranking the meal options. Then students will have to use or adapt their original procedures to include two more meal options in the rankings.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx
In this Model Eliciting Activity, MEA, students will help the Sweet Donut Shop determine what the newest donut will be. Students are given the cost to make each batch along with the selling price and are asked to determine the profit for each batch. Students create a procedure for ranking the donuts and write a letter explaining the procedure and the ranking. In the “twist” students are provided the starting and finishing times for each batch. They must determine the total amount of time, decide if their procedure should change based on the new information, and write a letter explaining whether the procedure changed and the new ranking of the donuts.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx
In this Model Eliciting Activity, MEA, The Junior League needs the students' help to determine which table rental company to use for their Charity Auction. With a tight budget, limited time, and a mistake in the order, students must create a procedure for determining the best rental company, write an explanation about their procedure, and present their recommendations to the class.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx
In this Model-Eliciting Activity (MEA), students will collaborate with their classmates to solve the problem of removing ants from their playground. They have the opportunity to analyze and compare data sets to clarify, explain and defend their findings in a written letter to the client. In addition, the lesson provides an opportunity to reinforce respect for all living things.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx
In this Model Eliciting Activity, MEA, students will devise a procedure, and justify it, in order to determine the best features of a water park. Students will use problem-solving skills and data sets presented in a bar graph and table. In a “twist,” students will be given new information and asked to determine whether their procedure still works. Students will create a bar graph representing the new data.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx