Clusters should not be sorted from Major to Supporting and then taught in that order. To do so would strip the coherence of the mathematical ideas and miss the opportunity to enhance the major work of the grade with the supporting clusters.
Related Courses
Related Access Points
Related Resources
Educational Software / Tool
Formative Assessments
Lesson Plans
Original Student Tutorials
Teaching Ideas
Virtual Manipulatives
STEM Lessons - Model Eliciting Activity
In this Model Eliciting Activity, MEA, a client is searching for the best cell phone carrier. Students will determine a procedure for ranking the companies based on votes for the favorite company and fees. The data is given in a scaled bar graph and a table. In a “twist,” the client provides more data, presented in a scaled pictograph, for the students to consider.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx
In this Model Eliciting Activity, MEA, students will devise a plan for ranking, and justify it, in order to choose the best class pet. Students will use problem-solving skills, interpret data presented in tables, add two-digit numbers, compare two and three-digit numbers, and create bar graphs.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx
Collaboration is key! In this MEA lesson, students will have the opportunity to work in collaborative groups to decide what items to include inside a guest goodie bag. The students will be able to interpret data from a table chart, create a bar graph, present their decisions orally in teams, and write an extension letter.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx
Students will research the effects of sugary drinks on their health. They will interpret data on a variety of beverages presented in the form of bar graphs and decide which beverages should be included in school vending machines to ensure students have healthy drink options.
In this Model Eliciting Activity, MEA, students will make decisions that focus on what and how human activities may impact ocean life and what actions students may take in protecting our ocean. The Supplemental Reading passage serves as a springboard to elicit students understanding of real issues around them.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx
In this Model Eliciting Activity, MEA, students will devise a procedure, and justify it, in order to determine the best features of a water park. Students will use problem-solving skills and data sets presented in a bar graph and table. In a “twist,” students will be given new information and asked to determine whether their procedure still works. Students will create a bar graph representing the new data.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx
MFAS Formative Assessments
Original Student Tutorials Mathematics - Grades K-5
Learn how to organize collected data about ice cream to create your own pictographs in this interactive student tutorial.
Help Ms. Griffin's class use pictographs to answer questions about the data they collected on their class's favorite ice cream flavors in this interactive student tutorial.
Student Resources
Original Student Tutorials
Help Ms. Griffin's class use pictographs to answer questions about the data they collected on their class's favorite ice cream flavors in this interactive student tutorial.
Type: Original Student Tutorial
Learn how to organize collected data about ice cream to create your own pictographs in this interactive student tutorial.
Type: Original Student Tutorial
Virtual Manipulatives
Students use this interactive tool to explore the connections between data sets and their representations in charts and graphs. Enter data in a table (1 to 6 columns, unlimited rows), and preview or print bar graphs, line graphs, pie charts, and pictographs. Students can select which set(s) of data to display in each graph, and compare the effects of different representations of the same data. Instructions and exploration questions are provided using the expandable "+" signs above the tool.
Type: Virtual Manipulative
In this activity, students can create and view a histogram using existing data sets or original data entered. Students can adjust the interval size using a slider bar, and they can also adjust the other scales on the graph. This activity allows students to explore histograms as a way to represent data as well as the concepts of mean, standard deviation, and scale. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.
Type: Virtual Manipulative