SC.912.L.18.5

Discuss the use of chemiosmotic gradients for ATP production in chloroplasts and mitochondria.
General Information
Subject Area: Science
Grade: 912
Body of Knowledge: Life Science
Idea: Level 2: Basic Application of Skills & Concepts
Standard: Matter and Energy Transformations -

A. All living things are composed of four basic categories of macromolecules and share the same basic needs for life.

B. Living organisms acquire the energy they need for life processes through various metabolic pathways (primarily photosynthesis and cellular respiration).

C. Chemical reactions in living things follow basic rules of chemistry and are usually regulated by enzymes.

D. The unique chemical properties of carbon and water make life on Earth possible.

Date Adopted or Revised: 02/08
Date of Last Rating: 05/08
Status: State Board Approved

Related Courses

This benchmark is part of these courses.
2000330: Biology 2 Honors (Specifically in versions: 2014 - 2015, 2015 - 2018, 2018 - 2022, 2022 and beyond (current))
2000370: Botany (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))

Related Access Points

Alternate version of this benchmark for students with significant cognitive disabilities.

Related Resources

Vetted resources educators can use to teach the concepts and skills in this benchmark.

Lesson Plan

ATP: The Fuel of Life:

The goal of this lesson is to introduce students who are interested in human biology and biochemistry to the subtleties of energy metabolism (typically not presented in standard biology and biochemistry textbooks) through the lens of ATP as the primary energy currency of the cell. Avoiding the details of the major pathways of energy production (such as glycolysis, the citric acid cycle, and oxidative phosphorylation), this lesson is focused exclusively on ATP, which is truly the fuel of life. Starting with the discovery and history of ATP, this lesson will walk the students through 8 segments (outlined below) interspersed by 7 in-class challenge questions and activities, to the final step of ATP production by the ATP synthase, an amazing molecular machine. A basic understanding of the components and subcellular organization (e.g. organelles, membranes, etc.) and chemical foundation (e.g. biomolecules, chemical equilibrium, biochemical energetics, etc.) of a eukaryotic cell is a desired prerequisite, but it is not a must. Through interactive in-class activities, this lesson is designed to spark the students' interest in biochemistry and human biology as a whole, but could serve as an introductory lesson to teaching advanced concepts of metabolism and bioenergetics in high school depending on the local science curriculum. No supplies or materials are needed.

Type: Lesson Plan

Original Student Tutorial

The Story of ATP Synthesis and the Role of Chemiosmosis :

The story of the role of chemiosmosis in ATP synthese is told through the animation of hydrogen ions in the last steps of cellular respiration.

Type: Original Student Tutorial

Original Student Tutorials Science - Grades 9-12

The Story of ATP Synthesis and the Role of Chemiosmosis :

The story of the role of chemiosmosis in ATP synthese is told through the animation of hydrogen ions in the last steps of cellular respiration.

Student Resources

Vetted resources students can use to learn the concepts and skills in this benchmark.

Original Student Tutorial

The Story of ATP Synthesis and the Role of Chemiosmosis :

The story of the role of chemiosmosis in ATP synthese is told through the animation of hydrogen ions in the last steps of cellular respiration.

Type: Original Student Tutorial

Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this benchmark.