SC.912.P.10.3

Compare and contrast work and power qualitatively and quantitatively.
General Information
Subject Area: Science
Grade: 912
Body of Knowledge: Physical Science
Idea: Level 2: Basic Application of Skills & Concepts
Standard: Energy -

A. Energy is involved in all physical and chemical processes. It is conserved, and can be transformed from one form to another and into work. At the atomic and nuclear levels energy is not continuous but exists in discrete amounts. Energy and mass are related through Einstein's equation E=mc2.

B. The properties of atomic nuclei are responsible for energy-related phenomena such as radioactivity, fission and fusion.

C. Changes in entropy and energy that accompany chemical reactions influence reaction paths. Chemical reactions result in the release or absorption of energy.

D. The theory of electromagnetism explains that electricity and magnetism are closely related. Electric charges are the source of electric fields. Moving charges generate magnetic fields.

E. Waves are the propagation of a disturbance. They transport energy and momentum but do not transport matter.

Date Adopted or Revised: 02/08
Date of Last Rating: 05/08
Status: State Board Approved

Related Courses

This benchmark is part of these courses.
2002440: Integrated Science 3 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))
2002450: Integrated Science 3 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))
2003310: Physical Science (Specifically in versions: 2015 - 2022, 2022 and beyond (current))
2003320: Physical Science Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))
2003380: Physics 1 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))
2003390: Physics 1 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))
2003600: Principles of Technology 1 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))
2002540: Solar Energy Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))
2002550: Solar Energy 2 Honors (Specifically in versions: 2014 - 2015, 2015 - 2018 (course terminated))
2002445: Integrated Science 3 for Credit Recovery (Specifically in versions: 2014 - 2015, 2015 - 2020 (course terminated))
2003385: Physics 1 for Credit Recovery (Specifically in versions: 2014 - 2015, 2015 - 2020 (course terminated))
2003836: Florida's Preinternational Baccalaureate Physics 1 (Specifically in versions: 2015 - 2022, 2022 and beyond (current))
7920022: Access Physical Science (Specifically in versions: 2016 - 2018, 2018 and beyond (current))

Related Access Points

Alternate version of this benchmark for students with significant cognitive disabilities.
SC.912.P.10.In.2: Identify power as work done in a certain amount of time using measurable terms, such as watts or horsepower.
SC.912.P.10.Su.2: Recognize the relationship between work and power, such as power is how fast a person or machine does work.
SC.912.P.10.Pa.2: Recognize that work requires energy.

Related Resources

Vetted resources educators can use to teach the concepts and skills in this benchmark.

Lesson Plans

Climb Your Way To The Top:

In this activity, you will find out if a person does more work walking up a flight of stairs or running up the same flight of stairs by having you or someone else actually do this. You will also learn what scientists mean by the words work and power. Students will take measurements, collect data and calculate work and power to determine the similarities and differences between the two concepts, as well as the factors that contribute to work and power.

Type: Lesson Plan

I got the Power!:

In this lesson students observe the relationship between work and power. Students demonstrate how to calculate work and power, and determine the factors that can affect both. The activities are done with common materials or simple classroom materials. Students use the resources to measure the rate at which work is done. Students compare and contrast their observations and engage in class discussions.

Type: Lesson Plan

Calculating Work and Power:

In this lesson the teacher will use scaffolding (I do, We do, You do) technique so students will be able to calculate work and power using the work and power equations.

(Intro)
The students will create work and power concept maps. (The following link by the Penn State University Libraries website will provide examples of concept maps and will also help you create a concept map if you are not sure how to create one: https://www.libraries.psu.edu/psul/lls/students/research_resources/conceptmap.html)

(I Do)
The teacher will then model work and power example problems.

(We do)
The students will complete 5 word problems and review answers on board.

(You do together)
The students will complete Power Climb in No Time Activity in groups and answer questions/orally discuss with teacher.

(Formative Evaluation)
The student will create new work and power concept maps and share with the class.

(You Do Independently)
The students will complete a 10 question summative evaluation based on concepts learned in lab and work and power equations.

Type: Lesson Plan

Efficient Storage:

The topic of this MEA is work and power. Students will be assigned the task of hiring employees to complete a given task. In order to make a decision as to which candidates to hire, the students initially must calculate the required work. The power each potential employee is capable of, the days they are available to work, the percentage of work-shifts they have missed over the past 12 months, and the hourly pay rate each worker commands will be provided to assist in the decision process. Full- and/or part-time positions are available. Through data analysis, the students will need to evaluate which factors are most significant in the hiring process. For instance, some groups may prioritize speed of work, while others prioritize cost or availability/dependability.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Type: Lesson Plan

Perspectives Video: Professional/Enthusiast

Forces and Power in Flint Knapping:

Sharpen your knowledge by understanding the forces used to make stone tools.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Resource Collection

Conceptual Physics Conservation of Energy Units:

This topic is broken into units to help in formulating cohesive, effective lessons. Clicking on each unit title will display appropriate activities, lesson plans, or labs. Units are intended to help students understand the interconnectedness of the concepts of conservation of energy, momentum and angular momentum underpinning the basis for much of physics. Units are not listed in a prescribed order.

Type: Resource Collection

STEM Lessons - Model Eliciting Activity

Efficient Storage:

The topic of this MEA is work and power. Students will be assigned the task of hiring employees to complete a given task. In order to make a decision as to which candidates to hire, the students initially must calculate the required work. The power each potential employee is capable of, the days they are available to work, the percentage of work-shifts they have missed over the past 12 months, and the hourly pay rate each worker commands will be provided to assist in the decision process. Full- and/or part-time positions are available. Through data analysis, the students will need to evaluate which factors are most significant in the hiring process. For instance, some groups may prioritize speed of work, while others prioritize cost or availability/dependability.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Student Resources

Vetted resources students can use to learn the concepts and skills in this benchmark.

Perspectives Video: Professional/Enthusiast

Forces and Power in Flint Knapping:

Sharpen your knowledge by understanding the forces used to make stone tools.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this benchmark.

Perspectives Video: Professional/Enthusiast

Forces and Power in Flint Knapping:

Sharpen your knowledge by understanding the forces used to make stone tools.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast