### Clarifications

*Clarification 1*: Postulates, relationships and theorems include opposite sides are congruent, consecutive angles are supplementary, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and rectangles are parallelograms with congruent diagonals.

*Clarification 2*: Instruction includes constructing two-column proofs, pictorial proofs, paragraph and narrative proofs, flow chart proofs or informal proofs.

*Clarification 3*: Instruction focuses on helping a student choose a method they can use reliably.

**Subject Area:**Mathematics (B.E.S.T.)

**Grade:**912

**Strand:**Geometric Reasoning

**Date Adopted or Revised:**08/20

**Status:**State Board Approved

## Related Courses

## Related Access Points

## Related Resources

## Formative Assessments

## MFAS Formative Assessments

Students are given expressions that represent the measures of two angles of a parallelogram and are asked to find the measures of all four angles describing any theorems used.

Students are given parallelogram *ABCD* along with midpoint *E* of diagonal *AC* and are asked to determine the relationship between the lengths *AE* + *ED* and *BE* + *EC*.

Students are given expressions that represent the measures of two angles of a parallelogram and are asked to find the measure of an angle opposite one of the given angles.

Students are asked to explain how to determine whether a four-sided frame is a rectangle using only a tape measure.

Students are asked to prove a specific diagonal of a rhombus bisects a pair of angles.

Students are asked to prove that a rectangle is a parallelogram.

Students are asked to prove that the diagonals of a rectangle are congruent.

Students are asked to prove that opposite angles of a parallelogram are congruent.

Students are asked to prove that the diagonals of a parallelogram bisect each other.

Students are asked to prove that opposite sides of a parallelogram are congruent.

Students are asked to explain why a pair of triangles formed by the sides and diagonals of a parallelogram are congruent.