# MA.912.GR.1.2 Export Print
Prove triangle congruence or similarity using Side-Side-Side, Side-Angle-Side, Angle-Side-Angle, Angle-Angle-Side, Angle-Angle and Hypotenuse-Leg.

### Clarifications

Clarification 1: Instruction includes constructing two-column proofs, pictorial proofs, paragraph and narrative proofs, flow chart proofs or informal proofs.

Clarification 2: Instruction focuses on helping a student choose a method they can use reliably.

General Information
Subject Area: Mathematics (B.E.S.T.)
Strand: Geometric Reasoning
Status: State Board Approved

## Related Courses

This benchmark is part of these courses.
1200400: Foundational Skills in Mathematics 9-12 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))
1206310: Geometry (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))
1206320: Geometry Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))
1206315: Geometry for Credit Recovery (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))
7912065: Access Geometry (Specifically in versions: 2015 - 2022, 2022 and beyond (current))

## Related Access Points

Alternate version of this benchmark for students with significant cognitive disabilities.
MA.912.GR.1.AP.2: Identify the triangle congruence or similarity criteria; Side-Side-Side, Side-Angle-Side, Angle-Side-Angle, Angle-Angle-Side, Angle-Angle and Hypotenuse-Leg.

## Related Resources

Vetted resources educators can use to teach the concepts and skills in this benchmark.

## Formative Assessments

Justifying a Proof of the AA Similarity Theorem:

Students are asked to justify statements of a proof of the AA Similarity Theorem.

Type: Formative Assessment

Describe the AA Similarity Theorem:

Students are asked to describe the AA Similarity Theorem.

Type: Formative Assessment

What Is the Triangle Relationship?:

Students are asked to write an informal justification of the AA Similarity Theorem.

Type: Formative Assessment

Drawing Triangles SSA:

Students are asked to draw a triangle given the lengths of two of its sides and the measure of a nonincluded angle and to decide if these conditions determine a unique triangle.

Type: Formative Assessment

Drawing Triangles SAS:

Students are asked to draw a triangle given the measures of two sides and their included angle and to explain if these conditions determine a unique triangle.

Type: Formative Assessment

Drawing Triangles ASA:

Students are asked to draw a triangle given the measures of two angles and their included side and to explain if these conditions determine a unique triangle.

Type: Formative Assessment

Drawing Triangles AAS:

Students are asked to draw a triangle given the measures of two angles and a non-included side and to explain if these conditions determine a unique triangle.

Type: Formative Assessment

Drawing Triangles AAA:

Students are asked to draw a triangle with given angle measures, and explain if these conditions determine a unique triangle.

Type: Formative Assessment

Similar Triangles - 2:

Students are asked to locate a pair of similar triangles in a diagram, explain why they are similar, and use the similarity to find an unknown length in the diagram.

Type: Formative Assessment

Similar Triangles - 1:

Students are asked locate a pair of similar triangles in a diagram, explain why they are similar, and use the similarity to find two unknown lengths in the diagram.

Type: Formative Assessment

## MFAS Formative Assessments

Describe the AA Similarity Theorem:

Students are asked to describe the AA Similarity Theorem.

Drawing Triangles AAA:

Students are asked to draw a triangle with given angle measures, and explain if these conditions determine a unique triangle.

Drawing Triangles AAS:

Students are asked to draw a triangle given the measures of two angles and a non-included side and to explain if these conditions determine a unique triangle.

Drawing Triangles ASA:

Students are asked to draw a triangle given the measures of two angles and their included side and to explain if these conditions determine a unique triangle.

Drawing Triangles SAS:

Students are asked to draw a triangle given the measures of two sides and their included angle and to explain if these conditions determine a unique triangle.

Drawing Triangles SSA:

Students are asked to draw a triangle given the lengths of two of its sides and the measure of a nonincluded angle and to decide if these conditions determine a unique triangle.

Justifying a Proof of the AA Similarity Theorem:

Students are asked to justify statements of a proof of the AA Similarity Theorem.

Similar Triangles - 1:

Students are asked locate a pair of similar triangles in a diagram, explain why they are similar, and use the similarity to find two unknown lengths in the diagram.

Similar Triangles - 2:

Students are asked to locate a pair of similar triangles in a diagram, explain why they are similar, and use the similarity to find an unknown length in the diagram.

What Is the Triangle Relationship?:

Students are asked to write an informal justification of the AA Similarity Theorem.

## Student Resources

Vetted resources students can use to learn the concepts and skills in this benchmark.

## Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this benchmark.