MA.7.DP.2.4

Use a simulation of a simple experiment to find experimental probabilities and compare them to theoretical probabilities.

Examples

Investigate whether a coin is fair by tossing it 1,000 times and comparing the percentage of heads to the theoretical probability 0.5.

Clarifications

Clarification 1: Instruction includes representing probability as a fraction, percentage or decimal.

Clarification 2: Instruction includes recognizing that experimental probabilities may differ from theoretical probabilities due to random variation. As the number of repetitions increases experimental probabilities will typically better approximate the theoretical probabilities.

Clarification 3: Experiments include tossing a fair coin, rolling a fair die, picking a card randomly from a deck, picking marbles randomly from a bag and spinning a fair spinner.

General Information
Subject Area: Mathematics (B.E.S.T.)
Grade: 7
Strand: Data Analysis and Probability
Status: State Board Approved

Related Courses

This benchmark is part of these courses.
1200400: Foundational Skills in Mathematics 9-12 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))
1205020: M/J Accelerated Mathematics Grade 6 (Specifically in versions: 2014 - 2015, 2015 - 2020, 2020 - 2022, 2022 and beyond (current))
1205040: M/J Grade 7 Mathematics (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))
1204000: M/J Foundational Skills in Mathematics 6-8 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))
7812020: Access M/J Grade 7 Mathematics (Specifically in versions: 2014 - 2015, 2015 - 2018, 2018 - 2019, 2019 - 2022, 2022 and beyond (current))

Related Access Points

Alternate version of this benchmark for students with significant cognitive disabilities.
MA.7.DP.2.AP.4: Conduct a simple experiment to find experimental probabilities.

Related Resources

Vetted resources educators can use to teach the concepts and skills in this benchmark.

Formative Assessments

Hen Eggs:

Students are asked to estimate the probability of a chance event based on observed frequencies.

Type: Formative Assessment

Marble Probability:

Students are asked to determine probabilities based on observed outcomes and to determine if the outcomes appear to be equally likely.

Type: Formative Assessment

Number Cube:

Students are asked to determine probabilities based on observed outcomes and to determine if the outcomes appear to be equally likely.

Type: Formative Assessment

Errand Runner:

Students are asked to determine the probability of a chance event and explain possible causes for the difference between the probability and observed frequencies.

Type: Formative Assessment

Lesson Plans

Genetics can be a Monster!:

In this lesson, students will use Punnett squares to calculate the probabilities of different genotypes and phenotypes produced by genetic crosses.

Type: Lesson Plan

Computer Simulated Experiments in Genetics:

A computer simulation package called "Star Genetics" is used to generate progeny for one or two additional generations. The distribution of the phenotypes of the progeny provide data from which the parental genotypes can be inferred. The number of progeny can be chosen by the student in order to increase the student's confidence in the inference.

Type: Lesson Plan

Perspectives Video: Experts

How Math Models Help Insurance Companies After a Hurricane Hits:

Hurricanes can hit at any time! How do insurance companies use math and weather data to help to restore the community?

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Probabilistic Weather Modeling:

Meteorologist from Risk Management discusses the use of probability in predicting hurricane tracks.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Let's Make a Math Deal:

Should I keep my choice or switch?  Learn more about the origins and probability behind the Monty Hall door picking dilemma and how Game Theory and strategy effect the probability.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Text Resource

Shuffling Shenanigans:

This informational text resource is intended to support reading in the content area. A student in love with magic card tricks asks and answers his own math questions after pursuing a career as a mathematician in order to solve them. How many times must a deck be shuffled to achieve a truly random mix of cards? The answer lies within.

Type: Text Resource

Tutorials

Comparing Theoretical to Experimental Probabilites:

This video compares theoretical and experimantal probabilities and sources of possible discrepancy.

Type: Tutorial

Making Predictions with Probability:

Watch the video as it predicts the number of times a spinner will land on a given outcome.

Type: Tutorial

MFAS Formative Assessments

Errand Runner:

Students are asked to determine the probability of a chance event and explain possible causes for the difference between the probability and observed frequencies.

Hen Eggs:

Students are asked to estimate the probability of a chance event based on observed frequencies.

Marble Probability:

Students are asked to determine probabilities based on observed outcomes and to determine if the outcomes appear to be equally likely.

Number Cube:

Students are asked to determine probabilities based on observed outcomes and to determine if the outcomes appear to be equally likely.

Student Resources

Vetted resources students can use to learn the concepts and skills in this benchmark.

Tutorials

Comparing Theoretical to Experimental Probabilites:

This video compares theoretical and experimantal probabilities and sources of possible discrepancy.

Type: Tutorial

Making Predictions with Probability:

Watch the video as it predicts the number of times a spinner will land on a given outcome.

Type: Tutorial

Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this benchmark.