# MA.6.DP.1.4

Given a histogram or line plot within a real-world context, qualitatively describe and interpret the spread and distribution of the data, including any symmetry, skewness, gaps, clusters, outliers and the range.

### Clarifications

Clarification 1: Refer to K-12 Mathematics Glossary (Appendix C).
General Information
Subject Area: Mathematics (B.E.S.T.)
Strand: Data Analysis and Probability
Status: State Board Approved

## Related Courses

This benchmark is part of these courses.
1205010: M/J Grade 6 Mathematics (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))
1205020: M/J Accelerated Mathematics Grade 6 (Specifically in versions: 2014 - 2015, 2015 - 2020, 2020 - 2022, 2022 and beyond (current))
1204000: M/J Foundational Skills in Mathematics 6-8 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))
7812015: Access M/J Grade 6 Mathematics (Specifically in versions: 2014 - 2015, 2015 - 2018, 2018 - 2022, 2022 and beyond (current))

## Related Access Points

Alternate version of this benchmark for students with significant cognitive disabilities.
MA.6.DP.1.AP.4: Given a histogram or a line plot, describe the physical features of the graph.

## Related Resources

Vetted resources educators can use to teach the concepts and skills in this benchmark.

## Formative Assessments

Quiz Mean and Deviation:

Students are asked to calculate measures of center and variability, identify outliers, and interpret the meaning of each in context.

Type: Formative Assessment

Florida Lakes:

Students are given a histogram and are asked to describe the variable under investigation and the number of observations.

Type: Formative Assessment

Select the Better Measure:

Students are asked to select the better measure of center and variability to describe each of two distributions of data.

Type: Formative Assessment

Math Test Center:

Students are asked to describe and compare the centers of two data sets given their dot plots.

Type: Formative Assessment

Pet Frequency:

Students are asked to describe the distribution of data given in raw form.

Type: Formative Assessment

Students are asked to describe and compare the spread of the distribution of two data sets given their dot plots.

Type: Formative Assessment

Math Test Shape:

Students are asked to describe the shapes of three distributions given their dot plots and to explain the shapes in terms of the context.

Type: Formative Assessment

## Original Student Tutorial

Castles, Catapults and Data: Histograms Part 2:

Learn how to interpret histograms to analyze data, and help an inventor predict the range of a catapult in part 2 of this interactive tutorial series. More specifically, you'll learn to describe the shape and spread of data distributions.

Type: Original Student Tutorial

## Perspectives Video: Expert

Histograms Show Trends in Fisheries Data Over Time:

NOAA Fishery management relies on histograms to show patterns and trends over time of fishery data.

Type: Perspectives Video: Expert

## Perspectives Video: Professional/Enthusiast

Normal? Non-Normal Distributions & Oceanography:

What does it mean to be normally distributed?  What do oceanographers do when the collected data is not normally distributed?

Type: Perspectives Video: Professional/Enthusiast

## MFAS Formative Assessments

Florida Lakes:

Students are given a histogram and are asked to describe the variable under investigation and the number of observations.

Math Test Center:

Students are asked to describe and compare the centers of two data sets given their dot plots.

Math Test Shape:

Students are asked to describe the shapes of three distributions given their dot plots and to explain the shapes in terms of the context.

Students are asked to describe and compare the spread of the distribution of two data sets given their dot plots.

Pet Frequency:

Students are asked to describe the distribution of data given in raw form.

Quiz Mean and Deviation:

Students are asked to calculate measures of center and variability, identify outliers, and interpret the meaning of each in context.

Select the Better Measure:

Students are asked to select the better measure of center and variability to describe each of two distributions of data.

## Original Student Tutorials Mathematics - Grades 6-8

Castles, Catapults and Data: Histograms Part 2:

Learn how to interpret histograms to analyze data, and help an inventor predict the range of a catapult in part 2 of this interactive tutorial series. More specifically, you'll learn to describe the shape and spread of data distributions.

## Student Resources

Vetted resources students can use to learn the concepts and skills in this benchmark.

## Original Student Tutorial

Castles, Catapults and Data: Histograms Part 2:

Learn how to interpret histograms to analyze data, and help an inventor predict the range of a catapult in part 2 of this interactive tutorial series. More specifically, you'll learn to describe the shape and spread of data distributions.