### Examples

Shanice had a sleepover and her mom is making French toast in the morning. If her mom hadloaves of bread and used loaves for the French toast, how much bread does she have left?

### Clarifications

*Clarification 1:*Instruction includes the use of visual models and equations to represent the problem.

**Subject Area:**Mathematics (B.E.S.T.)

**Grade:**5

**Strand:**Algebraic Reasoning

**Date Adopted or Revised:**08/20

**Status:**State Board Approved

## Related Courses

## Related Access Points

## Related Resources

## Formative Assessments

## Lesson Plans

## Original Student Tutorials

## Problem-Solving Tasks

## Teaching Idea

## STEM Lessons - Model Eliciting Activity

This activity allows students to determine the types of items that should be in a hurricane survival kit, use a budget and calculations to determine the items to include in the kit and gain an understanding of hurricanes and the need to prepare for them.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

This MEA will deepen students' knowledge of the Bill of Rights through collaborative problem solving. Students are required to analyze data in order to recommend three Amendments to celebrate during a community festival. They will perform operations with fractions and mixed numbers to recommend advertising options for the festival within a budget.

## MFAS Formative Assessments

Students are asked to estimate the sum of two mixed numbers and then calculate the sum.

Students are asked to solve a word problem by finding the product of two mixed numbers.

Students are asked to solve a word problem by finding the product of a fraction and a mixed number.

Students are given a word problem involving subtraction of fractions with unlike denominators. Students are asked to determine if a given answer is reasonable, explain their reasoning, and calculate the answer.

Students are given a word problem involving fractions with unlike denominators and are asked to estimate the sum, explain their reasoning, and then determine the sum.

Students are asked to estimate the difference between two fractional lengths and then calculate the difference.

## Original Student Tutorials Mathematics - Grades K-5

Read word problems and use number lines with benchmarks to solve multi-step problems involving addition and subtraction of fractions with unlike denominators. In this tutorial, you will help Daisy and Angie paint pictures using fractions.

Learn to solve addition and subtraction word problems involving fractions with unlike denominators. As you complete this art-themed, interactive tutorial, you'll use visual models, write and solve equations, and check the reasonableness of results based on estimates.

This is part 2 of a two-part series. Click below to open part 1.

Learn to interpret data presented on a line plot and use operations on fractions to solve problems involving information presented in line plots as you complete this beach-themed, interactive tutorial.

## Student Resources

## Original Student Tutorials

Learn to solve addition and subtraction word problems involving fractions with unlike denominators. As you complete this art-themed, interactive tutorial, you'll use visual models, write and solve equations, and check the reasonableness of results based on estimates.

This is part 2 of a two-part series. Click below to open part 1.

Type: Original Student Tutorial

Read word problems and use number lines with benchmarks to solve multi-step problems involving addition and subtraction of fractions with unlike denominators. In this tutorial, you will help Daisy and Angie paint pictures using fractions.

Type: Original Student Tutorial

Learn to interpret data presented on a line plot and use operations on fractions to solve problems involving information presented in line plots as you complete this beach-themed, interactive tutorial.

Type: Original Student Tutorial

## Problem-Solving Tasks

Students are asked to find the volume of water in a tank that is 3/4 of the way full.

Type: Problem-Solving Task

Students are asked to find the height of a rectangular prism when given the length, width and volume.

Type: Problem-Solving Task

The purpose of this task is for students to find the answer to a question in context that can be represented by fraction multiplication. This task is appropriate for either instruction or assessment depending on how it is used and where students are in their understanding of fraction multiplication.

Type: Problem-Solving Task

This tasks lends itself very well to multiple solution methods. Students may learn a lot by comparing different methods. Students who are already comfortable with fraction multiplication can go straight to the numeric solutions given below. Students who are still unsure of the meanings of these operations can draw pictures or diagrams.

Type: Problem-Solving Task

The purpose of this task is to present students with a situation where it is natural to add fractions with unlike denominators; it can be used for either assessment or instructional purposes. Teachers should anticipate two types of solutions: one where students calculate the distance Alex ran to determine an answer, and one where students compare the two parts of his run to benchmark fractions.

Type: Problem-Solving Task

The purpose of this task is to familiarize students with multiplying fractions with real-world questions.

Type: Problem-Solving Task

The purpose of this task is to have students add fractions with unlike denominators and divide a unit fraction by a whole number. This accessible real-life context provides students with an opportunity to apply their understanding of addition as joining two separate quantities.

Type: Problem-Solving Task

The task could be one of the first activities for introducing the multiplication of fractions. The task has fractions which are easy to draw and provides a linear situation. Students benefit from reasoning through the solution to such word problems before they are told that they can be solved by multiplying the fractions; this helps them develop meaning for fraction multiplication.

Type: Problem-Solving Task

This is the third problem in a series of three tasks involving fraction multiplication that can be solved with pictures or number lines. The first, Running to school, does not require that the unit fractions that comprise 3/4 be subdivided in order to find 1/3 of 3/4. The second task, Drinking Juice, does require students to subdivide the unit fractions that comprise 1/2 in order to find 3/4 of 1/2. This task also requires subdivision and involves multiplying a fraction and a mixed number.

Type: Problem-Solving Task

This is the second problem in a series of three tasks involving fraction multiplication that can be solved with pictures or number lines. This task does require students to subdivide the unit fractions that comprise 1/2 in order to find 3/4 of 1/2.

Type: Problem-Solving Task

This task addresses common errors that students make when interpreting adding fractions word problems. It is very important for students to recognize that they only add fractions when the fractions refer to the same whole, and also when the fractions of the whole being added do not overlap. This set of questions is designed to enhance a student's understanding of when it is and is not appropriate to add fractions.

Type: Problem-Solving Task

## Parent Resources

## Problem-Solving Tasks

Students are asked to find the volume of water in a tank that is 3/4 of the way full.

Type: Problem-Solving Task

Students are asked to find the height of a rectangular prism when given the length, width and volume.

Type: Problem-Solving Task

The purpose of this task is for students to find the answer to a question in context that can be represented by fraction multiplication. This task is appropriate for either instruction or assessment depending on how it is used and where students are in their understanding of fraction multiplication.

Type: Problem-Solving Task

This tasks lends itself very well to multiple solution methods. Students may learn a lot by comparing different methods. Students who are already comfortable with fraction multiplication can go straight to the numeric solutions given below. Students who are still unsure of the meanings of these operations can draw pictures or diagrams.

Type: Problem-Solving Task

The purpose of this task is to present students with a situation where it is natural to add fractions with unlike denominators; it can be used for either assessment or instructional purposes. Teachers should anticipate two types of solutions: one where students calculate the distance Alex ran to determine an answer, and one where students compare the two parts of his run to benchmark fractions.

Type: Problem-Solving Task

The purpose of this task is to familiarize students with multiplying fractions with real-world questions.

Type: Problem-Solving Task

The purpose of this task is to have students add fractions with unlike denominators and divide a unit fraction by a whole number. This accessible real-life context provides students with an opportunity to apply their understanding of addition as joining two separate quantities.

Type: Problem-Solving Task

The task could be one of the first activities for introducing the multiplication of fractions. The task has fractions which are easy to draw and provides a linear situation. Students benefit from reasoning through the solution to such word problems before they are told that they can be solved by multiplying the fractions; this helps them develop meaning for fraction multiplication.

Type: Problem-Solving Task

This is the third problem in a series of three tasks involving fraction multiplication that can be solved with pictures or number lines. The first, Running to school, does not require that the unit fractions that comprise 3/4 be subdivided in order to find 1/3 of 3/4. The second task, Drinking Juice, does require students to subdivide the unit fractions that comprise 1/2 in order to find 3/4 of 1/2. This task also requires subdivision and involves multiplying a fraction and a mixed number.

Type: Problem-Solving Task

This is the second problem in a series of three tasks involving fraction multiplication that can be solved with pictures or number lines. This task does require students to subdivide the unit fractions that comprise 1/2 in order to find 3/4 of 1/2.

Type: Problem-Solving Task

This task addresses common errors that students make when interpreting adding fractions word problems. It is very important for students to recognize that they only add fractions when the fractions refer to the same whole, and also when the fractions of the whole being added do not overlap. This set of questions is designed to enhance a student's understanding of when it is and is not appropriate to add fractions.

Type: Problem-Solving Task