**Number:**MA.912.T.1

**Title:**Define and use trigonometric ratios, identities or functions to solve problems.

**Type:**Standard

**Subject:**Mathematics (B.E.S.T.)

**Grade:**912

**Strand:**Trigonometry

## Related Benchmarks

## Related Access Points

## Access Points

## Related Resources

## Formative Assessments

## Lesson Plans

## Original Student Tutorial

## Perspectives Video: Experts

## Perspectives Video: Professional/Enthusiast

## Problem-Solving Tasks

## Student Resources

## Original Student Tutorial

Learn how to use trigonometric ratios to find the heights of famous monuments and solve a real-world application in this interactive tutorial.

Type: Original Student Tutorial

## Problem-Solving Tasks

Using a chart of diameters of different denominations of coins, students are asked to figure out how many coins fit around a central coin. (For this task, United States coins are used, but the task can be adapted for coins from other countries.)

Type: Problem-Solving Task

This problem solving task asks students to find the area of an equilateral triangle. Various solutions are presented that include the Pythagoren theorem and trigonometric functions.

Type: Problem-Solving Task

This problem asks students to model phenomena on the surface of the earth by examining the visibility of the lamp in a lighthouse from a boat.

Type: Problem-Solving Task

This task engages students in an open-ended modeling task that uses similarity of right triangles.

Type: Problem-Solving Task

This problem solving task gives an interesting context for implementing ideas from geometry and trigonometry.

Type: Problem-Solving Task

This modeling task involves several different types of geometric knowledge and problem-solving: finding areas of sectors of circles, using trigonometric ratios to solve right triangles, and decomposing a complicated figure involving multiple circular arcs into parts whose areas can be found.

Type: Problem-Solving Task

This task applies geometric concepts, namely properties of tangents to circles and of right triangles, in a modeling situation. The key geometric point in this task is to recognize that the line of sight from the mountain top towards the horizon is tangent to the earth. We can then use a right triangle where one leg is tangent to a circle and the other leg is the radius of the circle to investigate this situation.

Type: Problem-Solving Task

In this task, students use trigonometric functions to model the movement of a point around a wheel and, through space. Students also interpret features of graphs in terms of the given real-world context.

Type: Problem-Solving Task

## Parent Resources

## Problem-Solving Tasks

Using a chart of diameters of different denominations of coins, students are asked to figure out how many coins fit around a central coin. (For this task, United States coins are used, but the task can be adapted for coins from other countries.)

Type: Problem-Solving Task

This problem solving task asks students to find the area of an equilateral triangle. Various solutions are presented that include the Pythagoren theorem and trigonometric functions.

Type: Problem-Solving Task

This problem asks students to model phenomena on the surface of the earth by examining the visibility of the lamp in a lighthouse from a boat.

Type: Problem-Solving Task

This task engages students in an open-ended modeling task that uses similarity of right triangles.

Type: Problem-Solving Task

This problem solving task gives an interesting context for implementing ideas from geometry and trigonometry.

Type: Problem-Solving Task

This modeling task involves several different types of geometric knowledge and problem-solving: finding areas of sectors of circles, using trigonometric ratios to solve right triangles, and decomposing a complicated figure involving multiple circular arcs into parts whose areas can be found.

Type: Problem-Solving Task

This task applies geometric concepts, namely properties of tangents to circles and of right triangles, in a modeling situation. The key geometric point in this task is to recognize that the line of sight from the mountain top towards the horizon is tangent to the earth. We can then use a right triangle where one leg is tangent to a circle and the other leg is the radius of the circle to investigate this situation.

Type: Problem-Solving Task

In this task, students use trigonometric functions to model the movement of a point around a wheel and, through space. Students also interpret features of graphs in terms of the given real-world context.

Type: Problem-Solving Task