Ecology   (#2000380)

Version for Academic Year:

Course Standards

General Course Information and Notes

General Notes

Laboratory investigations that include the use of scientific inquiry, research, measurement, problem solving, laboratory apparatus and technologies, experimental procedures, and safety procedures are an integral part of this course. The National Science Teachers Association (NSTA) recommends that at the high school level, all students should be in the science lab or field, collecting data every week. School laboratory investigations (labs) are defined by the National Research Council (NRC) as an experience in the laboratory, classroom, or the field that provides students with opportunities to interact directly with natural phenomena or with data collected by others using tools, materials, data collection techniques, and models (NRC, 2006, p. 3). Laboratory investigations in the high school classroom should help all students develop a growing understanding of the complexity and ambiguity of empirical work, as well as the skills to calibrate and troubleshoot equipment used to make observations. Learners should understand measurement error; and have the skills to aggregate, interpret, and present the resulting data (National Research Council, 2006, p.77; NSTA, 2007).

Special Notes:

Instructional Practices
Teaching from a range of complex text is optimized when teachers in all subject areas implement the following strategies on a routine basis:
  1. Ensuring wide reading from complex text that varies in length.
  2. Making close reading and rereading of texts central to lessons.
  3. Emphasizing text-specific complex questions, and cognitively complex tasks, reinforce focus on the text and cultivate independence.
  4. Emphasizing students supporting answers based upon evidence from the text.
  5. Providing extensive research and writing opportunities (claims and evidence).

General Information

Course Number: 2000380
Course Path:
Abbreviated Title: ECOLOGY
Course Length: Year (Y)
Course Type: Core Academic Course
Course Level: 2
Course Status: Course Approved
Grade Level(s): 9,10,11,12

Educator Certifications

One of these educator certification options is required to teach this course.

Student Resources

Vetted resources students can use to learn the concepts and skills in this course.

Original Student Tutorials

Newton's Insight: Standing on the Shoulders of Giants:

Discover how Isaac Newton's background, talents, interests, and goals influenced his groundbreaking work in this interactive tutorial.

This is part 4 in a 4-part series. Click below to explore the other tutorials in the series.

Type: Original Student Tutorial

Turtles and Towns:

Explore the impacts on sea turtles, humans, and the economy when we live, work, and play at the beach with this interactive tutorial.

Type: Original Student Tutorial

How Viral Disease Spreads:

Learn how scientists measure viral spread and use this information to make recommendations for the public in this interactive tutorial.

Type: Original Student Tutorial

Evaluating Sources of Information:

Learn how to identify different sources of scientific claims and to evaluate their reliability in this interactive tutorial.

Type: Original Student Tutorial

Testing Scientific Claims:

Learn how to test scientific claims and judge competing hypotheses by understanding how they can be tested against one another in this interactive tutorial.

Type: Original Student Tutorial

The Year-Round School Debate: Identifying Faulty Reasoning – Part Two:

This is Part Two of a two-part series. Learn to identify faulty reasoning in this interactive tutorial series. You'll learn what some experts say about year-round schools, what research has been conducted about their effectiveness, and how arguments can be made for and against year-round education. Then, you'll read a speech in favor of year-round schools and identify faulty reasoning within the argument, specifically the use of hasty generalizations.

Make sure to complete Part One before Part Two! Click HERE to launch Part One.

Type: Original Student Tutorial

The Year-Round School Debate: Identifying Faulty Reasoning – Part One:

Learn to identify faulty reasoning in this two-part interactive English Language Arts tutorial. You'll learn what some experts say about year-round schools, what research has been conducted about their effectiveness, and how arguments can be made for and against year-round education. Then, you'll read a speech in favor of year-round schools and identify faulty reasoning within the argument, specifically the use of hasty generalizations. 

Make sure to complete both parts of this series! Click HERE to open Part Two. 

Type: Original Student Tutorial

Evaluating an Argument – Part Four: JFK’s Inaugural Address:

Examine President John F. Kennedy's inaugural address in this interactive tutorial. You will examine Kennedy's argument, main claim, smaller claims, reasons, and evidence.

In Part Four, you'll use what you've learned throughout this series to evaluate Kennedy's overall argument.

Make sure to complete the previous parts of this series before beginning Part 4.

  • Click HERE to launch Part One.
  • Click HERE to launch Part Two.
  • Click HERE to launch Part Three.

Type: Original Student Tutorial

Evaluating an Argument – Part Three: JFK’s Inaugural Address:

Examine President John F. Kennedy's inaugural address in this interactive tutorial. You will examine Kennedy's argument, main claim, smaller claims, reasons, and evidence. By the end of this four-part series, you should be able to evaluate his overall argument. 

In Part Three, you will read more of Kennedy's speech and identify a smaller claim in this section of his speech. You will also evaluate this smaller claim's relevancy to the main claim and evaluate Kennedy's reasons and evidence. 

Make sure to complete all four parts of this series!

  • Click HERE to launch Part One.
  • Click HERE to launch Part Two.
  • Click HERE to launch Part Four.

Type: Original Student Tutorial

Ready for Takeoff! -- Part Two:

This is Part Two of a two-part tutorial series. In this interactive tutorial, you'll practice identifying a speaker's purpose using a speech by aviation pioneer Amelia Earhart. You will examine her use of rhetorical appeals, including ethos, logos, pathos, and kairos. Finally, you'll evaluate the effectiveness of Earhart's use of rhetorical appeals.

Be sure to complete Part One first. Click here to launch PART ONE.

Type: Original Student Tutorial

Ready for Takeoff! -- Part One:

This is Part One of a two-part tutorial series. In this interactive tutorial, you'll practice identifying a speaker's purpose using a speech by aviation pioneer Amelia Earhart. You will examine her use of rhetorical appeals, including ethos, logos, pathos, and kairos. Finally, you'll evaluate the effectiveness of Earhart's use of rhetorical appeals. 

Click here to launch PART TWO.

Type: Original Student Tutorial

Biodiversity and Non-native Species:

See how non-native species can impact ecosystem biodiversity to create problems for native species in this interactive tutorial.

Type: Original Student Tutorial

Expository Writing: Eyes in the Sky (Part 4 of 4):

Practice writing different aspects of an expository essay about scientists using drones to research glaciers in Peru. This interactive tutorial is part four of a four-part series. In this final tutorial, you will learn about the elements of a body paragraph. You will also create a body paragraph with supporting evidence. Finally, you will learn about the elements of a conclusion and practice creating a “gift.” 

This tutorial is part four of a four-part series. Click below to open the other tutorials in this series.

Type: Original Student Tutorial

Conditions for Natural Selection:

Explore three conditions required for natural selection and see how these conditions lead to allele frequency shifts in a population. 

Type: Original Student Tutorial

Phosphorus in the Everglades:

Learn how phosphorus pollution can lead to changes in the Everglades. 

Type: Original Student Tutorial

Expository Writing: Eyes in the Sky (Part 3 of 4):

Learn how to write an introduction for an expository essay in this interactive tutorial. This tutorial is the third part of a four-part series. In previous tutorials in this series, students analyzed an informational text and video about scientists using drones to explore glaciers in Peru. Students also determined the central idea and important details of the text and wrote an effective summary. In part three, you'll learn how to write an introduction for an expository essay about the scientists' research. 

This tutorial is part three of a four-part series. Click below to open the other tutorials in this series.

Type: Original Student Tutorial

Drones and Glaciers: Eyes in the Sky (Part 2 of 4):

Learn how to identify the central idea and important details of a text, as well as how to write an effective summary in this interactive tutorial. This tutorial is the second tutorial in a four-part series that examines how scientists are using drones to explore glaciers in Peru. 

This tutorial is part two of a four-part series. Click below to open the other tutorials in this series.

Type: Original Student Tutorial

Drones and Glaciers: Eyes in the Sky (Part 1 of 4):

Learn about how researchers are using drones, also called unmanned aerial vehicles or UAVs, to study glaciers in Peru. In this interactive tutorial, you will practice citing text evidence when answering questions about a text.

This tutorial is part one of a four-part series. Click below to open the other tutorials in this series.

Type: Original Student Tutorial

Migration in the Kenyan Savannah:

Examine migration and factors affecting both population sizes and distributions of key species in the Kenyan savannah with this interactive tutorial. 

Type: Original Student Tutorial

Hallowed Words: Evaluating a Speaker's Effectiveness:

Learn how to evaluate a speaker's point of view, reasoning, and use of evidence. In this interactive tutorial, you'll examine Abraham Lincoln's "Gettysburg Address" and evaluate the effectiveness of his words by analyzing his use of reasoning and evidence. 

Type: Original Student Tutorial

Interactions among Organisms: Kenya:

Explore examples of mutualism, competition, and predation in the Kenyan savannah ecosystem. 

Type: Original Student Tutorial

Ant Populations in the Kenyan Savannah:

Explore living and nonliving factors affecting populations of ants in Kenya and learn a bit about the importance of the acacia tree in this savannah ecosystem. 

Type: Original Student Tutorial

Untangling Food Webs:

Learn how living organisms can be organized into food webs and how energy is transferred through a food web from producers to consumers to decomposers. This interactive tutorial also includes interactive knowledge checks.

Type: Original Student Tutorial

Methylmercury in the Everglades:

Explore the impact of methylmercury pollution in the Everglades wetland ecosystem.

Type: Original Student Tutorial

Periphyton in the Everglades:

Explore species interdependence focusing on roles played by periphyton in the Everglades ecosystem with this interactive tutorial.

Type: Original Student Tutorial

Ecological Data Analysis:

See how data are interpreted to better understand the reproductive strategies taken by sea anemones with this interactive tutorial.

Type: Original Student Tutorial

Beyond Natural Selection: Mechanisms of Evolution:

Explore mechanisms of evolutionary change other than natural selection such as mutation, gene flow, and genetic drift in this interactive tutorial.

Type: Original Student Tutorial

Ecology Sampling Strategies:

Examine field sampling strategies used to gather data and avoid bias in ecology research. This interactive tutorial features the CPALMS Perspectives video .

Type: Original Student Tutorial

The Mystery of Muscle Cell Metabolism:

Explore the mystery of muscle cell metabolism and how cells are able to meet the need for a constant supply of energy. In this interactive tutorial, you'll identify the basic structure of adenosine triphosphate (ATP), explain how ATP’s structure is related it its job in the cell, and connect this role to energy transfers in living things.

Type: Original Student Tutorial

Comparing Mitosis and Meiosis:

Compare and contrast mitosis and meiosis in this interactive tutorial. You'll also relate them to the processes of sexual and asexual reproduction and their consequences for genetic variation.

Type: Original Student Tutorial

Natural Selection:

Describe the conditions required for natural selection and tell how it can result in changes in species over time. In this interactive tutorial, follow Charles Darwin through a life of exploration, observation, and experimentation to see how he developed his ideas.

Type: Original Student Tutorial

Earliest Beginnings:

Learn how to identify and describe the leading scientific explanations of the origin of life on Earth.

Type: Original Student Tutorial

Changing with the Times: Variation within Ecosystems:

Explore how environmental changes at different time scales affect living organisms within ecosystems in this interactive tutorial.

Type: Original Student Tutorial

Graphing Quadratic Functions:

Follow as we discover key features of a quadratic equation written in vertex form in this interactive tutorial.

Type: Original Student Tutorial

Observation vs. Inference:

Learn how to identify explicit evidence and understand implicit meaning in a text and demonstrate how and why scientific inferences are drawn from scientific observation and be able to identify examples in biology.

Type: Original Student Tutorial

Cool Case Files:

Learn that a scientific theory is the culmination of many experiments and supplies the most powerful explanation that scientists have to offer with this interactive tutorial.

Type: Original Student Tutorial

Population Interactions:

Explore population interactions and how those interactions can affect population size in this interactive tutorial. You'll also learn about competition, predation and symbiosis.

Type: Original Student Tutorial

Defining Science:

Learn how to define what science is and what it is not. In this interactive tutorial, you will identify why certain ways of exploring the universe can and cannot be considered scientific practices.

Type: Original Student Tutorial

Diving the Depths of Underwater Life:

Learn how the distribution of aquatic life forms is affected by light, temperature, and salinity with this interactive tutorial.

Type: Original Student Tutorial

Chemistry With a Conscience:

Explore green chemistry and what it means to be benign by design in this interactive tutorial.

Type: Original Student Tutorial

Educational Games

EvoDots - Software for Evolutionary Analysis:

The software application, which allows the students to simulate natural selection in a population of dots, goes along with a tutorial which is also at this site.

Type: Educational Game

Stop Disasters Before They Happen:

Students attempt to save towns from damage prior to the arrival of several different natural disasters. Students will learn the importance of early prevention and actions to protect others, themselves and their property when faced with a natural disaster. Certain disasters are more appropriate for particular grade levels. Each scenario takes between 20 and 45 minutes to play, depending on the disaster for which your students are trying to prepare. There are five scenarios available, hurricane, tsunami, flood, earthquake, and wildfire. Each scenario can be played on easy, medium or hard difficulty levels. As with life, there are no "perfect solutions" to each scenario and no "perfect score", so students can play multiple times and the scenarios will still be slightly different.These simulation are part of a larger website that provides multiple links for natural disasters.

Type: Educational Game

Lesson Plans

The Surprising World of Complex Systems:

This lesson introduces students to complex systems and to basic concepts from the field of system dynamics that lie at the heart of systems thinking. These concepts include stocks and flows, feedback loops, unintended consequences, and the basic principle that the behavior of complex systems can best be understood by looking at the system as a whole, and specifically by analyzing the system’s underlying structure. The lesson introduces these topics through an immersion in (and a role-play simulation of) the dynamics of urban recycling systems, many of which have been thrown into crisis in the past two years. Through this current-affairs example of complex systems in crisis, we identify some key structural features that help to explain how these systems behave over time. We also discover how well-intentioned action can cause negative unintended consequences when we try to intervene in a complex system without understanding how it operates.

Type: Lesson Plan

Elasticity: Studying How Solids Change Shape and Size:

This lesson's primary focus is to introduce high school students to the concept of Elasticity, which is one of the fundamental concepts in the understanding of the physics of deformation in solids. The main learning objectives are: (1) To understand the essential concept of Elasticity and be able to distinguish simple solids objects based on degree and extent of their elastic properties; (2) To appreciate the utility of the elastic force vs. deformation curve through experiments; (3) To be aware of potential sources of error present in such experiments and identify corrective measures; and (4) To appreciate the relevance of Elasticity in practical applications.

Type: Lesson Plan

CO2: Find Out What It Means to You:

This BLOSSOMS lesson discusses Carbon Dioxide, and its impact on climate change. The main learning objective is for students to become more familiar with human production of Carbon Dioxide gas, as well as to gain an awareness of the potential for this gas to effect the temperature of Earth’s atmosphere. This lesson should take about an hour to complete. In order to complete the lesson, the teacher will need: printed copies of signs representing the different products and processes that take place in the carbon cycle (included), samples of matter that represent those products, handouts for the students to create a graphic of the carbon cycle (included) and graph paper or graphing software for students to create graphs. In the breaks of this BLOSSOMS lesson, students will be creating models of the carbon cycle as well as observing experiments and analyzing data from them. It is hoped that this lesson will familiarize students with ways in which carbon moves through our environment and provide them with some personal connection to the impact that an increased concentration of CO2 can have on air temperature. The goal is to spark their interest and hopefully to encourage them to ask and investigate more questions about the climate. 

Type: Lesson Plan

Perspectives Video: Experts

Jumping Robots and Quadratics:

<p>Jump to it and learn more about how quadratic equations are&nbsp;used in robot navigation problem solving!</p>

Type: Perspectives Video: Expert

Mathematically Exploring the Wakulla Caves:

The tide is high! How can we statistically prove there is a relationship between the tides on the Gulf Coast and in a fresh water spring 20 miles from each other?

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

MicroGravity Sensors & Statistics:

Statistical analysis played an essential role in using microgravity sensors to determine location of caves in Wakulla County.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Everglades Invertebrate Biodiversity:

Pick up the pace and learn how snails fit into the Florida food web!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Mutations and Genetic Diversity:

Mutations don't just happen to comic book heroes and villains. Learn more about this natural biological phenomenon!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Measuring Biodiversity to Evaluate Human Impact:

Humans impact the environment in a number of ways. Learn more about how we interact with nature!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Coral Varieties and their Place in Aquatic Systems:

Learn all the information about coral and corral that knowledge!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Observing Invertebrate Biodiversity with Live Rock:

This teaching activity rocks! Learn about aquatic ecosystems and hands-on learning!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

The Role of Mangroves in Coastal Ecosystems:

What lurks beneath the water's surface? Lots of creatures, big and small! Learn how mangroves grow in an unusual environment and support many other organisms both in and out of the water.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Ocean Currents and Aquatic Life:

Too many ideas about ocean currents swirling around in your head? Get into the flow of things with this video.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Physical Adaptation to Low Light Aquatic Environments:

This biologist will brighten your day with a discussion on colorful (or not) ways that marine organisms have adapted to ocean lighting.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Oil Spills and Biodiversity:

Do you think you know oil there is to know about human impact on the environment? Let this biologist explain.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Physical Environment and Natural Selection:

This video is a natural selection for learning about evolution.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Methods of Evolution in Animal Populations Big and Small:

Interested in how evolution happens? Drift into this video and go with the flow.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Oil Fingerprinting:

Humans aren't the only ones who get their fingerprints taken. Learn how this scientist is like a crime scene investigator using oil "fingerprints" to explain the orgins of spilled oil.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

On the Origin of Crude Oil:

An oil scientist explains how crude oil is formed and how it behaves in the environment.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

How do Fish Stay in their Zone?:

Sink into science as a biologist floats a few thoughts about physiological adaptations marine animals use to stay at the right depth.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Environmental Restoration Techniques:

Scientists can be superheroes when it comes to saving rivers! Watch this video to find out more.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Protect our Fisheries from Invasive Species:

Lionfish and other species are roaring past our native populations. Learn more.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Monitoring Oil Spill Impacts through Community Involvement :

Don't cry over spilled oil. Take action instead! Learn how students can help scientists who are studying what happens to spilled oil and over time how it affects the environment.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Negative Impacts of Oil Spills:

Learn how the Woods Hole Oceanographic Institution experts track oil-soaked sand patties on the Gulf Coast to monitor possible negative environmental impacts from the Deepwater Horizon oil spill.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Managing Lionfish Populations:

<p>Invasive lionfish are taking a bite out of the ecosystem of Biscayne Bay. Biologists are looking for new ways to remove them, including encouraging recreational divers to bite back!</p>

Type: Perspectives Video: Expert

Perspectives Video: Professional/Enthusiasts

Interaction of the Spheres:

Jeff Dutrow discusses how the interactions of spheres impacts fish behaviors including tides, currents, and seasons.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Unit Conversions:

<p>Get fired up as you learn more about ceramic glaze recipes and mathematical units.</p>

Type: Perspectives Video: Professional/Enthusiast

Estimating Oil Seep Production by Bubble Volume:

<p>You'll need to bring your computer skills and math knowledge to estimate oil volume and rate as it seeps from the ocean floor. Dive in!</p>

Type: Perspectives Video: Professional/Enthusiast

Managing Waste Disposal with Landfills and Recycling:

Landfills have a come a long way! Explore modern techniques for managing our environmental impact through responsible waste disposal.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Presentation/Slideshow

What Killed the Dinosaurs?:

It is often difficult, sometimes impossible, to get a definitive answer to some of life's most enduring questions. Scientific processes provide alternative explanations for a wide variety of phenomena by piecing together all the available information. This interactive activity on the Evolution website explores four possible hypotheses to explain what caused the extinction of the dinosaurs 65 million years ago, inviting the viewer to consider the evidence and come to their own decision.

Type: Presentation/Slideshow

Problem-Solving Tasks

Finding Parabolas through Two Points:

This problem-solving task challenges students to find all quadratic functions described by given equation and coordinates, and describe how the graphs of those functions are related to one another.

Type: Problem-Solving Task

Weed Killer:

The principal purpose of the task is to explore a real-world application problem with algebra, working with units and maintaining reasonable levels of accuracy throughout. Students are asked to determine which product will be the most economical to meet the requirements given in the problem.

Type: Problem-Solving Task

Dinosaur Bones:

The purpose of this task is to illustrate through an absurd example the fact that in real life quantities are reported to a certain level of accuracy, and it does not make sense to treat them as having greater accuracy.

Type: Problem-Solving Task

Bus and Car:

This task operates at two levels. In part it is a simple exploration of the relationship between speed, distance, and time. Part (c) requires understanding of the idea of average speed, and gives an opportunity to address the common confusion between average speed and the average of the speeds for the two segments of the trip.

At a higher level, the task addresses MAFS.912.N-Q.1.3, since realistically neither the car nor the bus is going to travel at exactly the same speed from beginning to end of each segment; there is time traveling through traffic in cities, and even on the autobahn the speed is not constant. Thus students must make judgments about the level of accuracy with which to report the result.

Type: Problem-Solving Task

Accuracy of Carbon 14 Dating I:

This task examines, from a mathematical and statistical point of view, how scientists measure the age of organic materials by measuring the ratio of Carbon 14 to Carbon 12. The focus here is on the statistical nature of such dating.

Type: Problem-Solving Task

Accuracy of Carbon 14 Dating II:

This task examines, from a mathematical and statistical point of view, how scientists measure the age of organic materials by measuring the ratio of Carbon 14 to Carbon 12. The focus here is on the statistical nature of such dating.

Type: Problem-Solving Task

Fuel Efficiency:

The problem requires students to not only convert miles to kilometers and gallons to liters but they also have to deal with the added complication of finding the reciprocal at some point.

Type: Problem-Solving Task

How Much Is a Penny Worth?:

This task asks students to calculate the cost of materials to make a penny, utilizing rates of grams of copper.

Type: Problem-Solving Task

Runner's World:

Students are asked to use units to determine if the given statement is valid.

Type: Problem-Solving Task

Harvesting the Fields:

This is a challenging task, suitable for extended work, and reaching into a deep understanding of units. Students are given a scenario and asked to determine the number of people required to complete the amount of work in the time described. The task requires students to exhibit , Make sense of problems and persevere in solving them. An algebraic solution is possible but complicated; a numerical solution is both simpler and more sophisticated, requiring skilled use of units and quantitative reasoning. Thus the task aligns with either MAFS.912.A-CED.1.1 or MAFS.912.N-Q.1.1, depending on the approach.

Type: Problem-Solving Task

Graphs of Quadratic Functions:

Students compare graphs of different quadratic functions, then produce equations of their own to satisfy given conditions.

This exploration can be done in class near the beginning of a unit on graphing parabolas. Students need to be familiar with intercepts, and need to know what the vertex is. It is effective after students have graphed parabolas in vertex form (y=a(x–h)2+k), but have not yet explored graphing other forms.

Type: Problem-Solving Task

Traffic Jam:

This resource poses the question, "how many vehicles might be involved in a traffic jam 12 miles long?"

This task, while involving relatively simple arithmetic, promps students to practice modeling (MP4), work with units and conversion (N-Q.1), and develop a new unit (N-Q.2). Students will also consider the appropriate level of accuracy to use in their conclusions (N-Q.3).

Type: Problem-Solving Task

Selling Fuel Oil at a Loss:

The task is a modeling problem which ties in to financial decisions faced routinely by businesses, namely the balance between maintaining inventory and raising short-term capital for investment or re-investment in developing the business.

Type: Problem-Solving Task

Felicia's Drive:

This task provides students the opportunity to make use of units to find the gas needed (). It also requires them to make some sensible approximations (e.g., 2.92 gallons is not a good answer to part (a)) and to recognize that Felicia's situation requires her to round up. Various answers to (a) are possible, depending on how much students think is a safe amount for Felicia to have left in the tank when she arrives at the gas station. The key point is for them to explain their choices. This task provides an opportunity for students to practice MAFS.K12.MP.2.1: Reason abstractly and quantitatively, and MAFS.K12.MP.3.1: Construct viable arguments and critique the reasoning of others.

Type: Problem-Solving Task

Graphs of Power Functions:

This task requires students to recognize the graphs of different (positive) powers of x.

Type: Problem-Solving Task

Calories in a Sports Drink:

This problem involves the meaning of numbers found on labels. When the level of accuracy is not given we need to make assumptions based on how the information is reported. An unexpected surprise awaits in this case, however, as no reasonable interpretation of the level of accuracy makes sense of the information reported on the bottles in parts (b) and (c). Either a miscalculation has been made or the numbers have been rounded in a very odd way.

Type: Problem-Solving Task

Text Resources

Carbon Cycle- Ocean Acidification:

This website contains units focused on Earth's systems and cycles, which illustrate a sequence for learning the concepts through reading, data analysis activities, satellite imagery, computer visualizations, and hands-on experiments. This unit focuses on the ocean carbon cycle.

Type: Text Resource

What you Need to Know about Energy:

This site from the National Academy of Sciences presents uses, sources, costs, and efficiency of energy.

Type: Text Resource

Tutorials

Graphs and Solutions of Functions in Quadratic Equations:

You will learn how the parent function for a quadratic function is affected when f(x) = x2.

Type: Tutorial

Graphing Quadractic Functions in Vertex Form:

This tutorial will help the students to identify the vertex of a parabola from the equation, and then graph the parabola.

Type: Tutorial

Graphing Quadratic Equations:

This tutorial helps the learners to graph the equation of a quadratic function using the coordinates of the vertex of a parabola and its x- intercepts.

Type: Tutorial

Graphing Exponential Equations:

This tutorial will help you to learn about exponential functions by graphing various equations representing exponential growth and decay.

Type: Tutorial

Hardy-Weinberg Principle:

This Khan Academy video discusses the conditions required for Hardy-Weinberg equilibrium and explains how to solve Hardy-Weinberg problems.

Type: Tutorial

Variation in a Species:

This Khan Academy video explains how variation can be introduced into a species and the importance of sexual reproduction in this process.

Type: Tutorial

Natural Selection and the Owl Butterfly:

This Khan Academy tutorial explains how the owl butterfly might have evolved the spots on its wings through natural selection.

Type: Tutorial

Not All Scientific Studies are Created Equal:

Every day, we are bombarded by attention grabbing headlines that promise miracle cures to all of our ailments -- often backed up by a "scientific study." But what are these studies, and how do we know if they are reliable? David H. Schwartz dissects two types of studies that scientists use, illuminating why you should always approach the claims with a critical eye.

Type: Tutorial

Dead Stuff: The Secret Ingredient in Our Food Chain:

When you picture the lowest levels of the food chain, you might imagine herbivores happily munching on lush, living green plants. But this idyllic image leaves out a huge (and slightly less appetizing) source of nourishment: dead stuff. John C. Moore details the "brown food chain," explaining how such unlikely delicacies as pond scum and animal feces contribute enormous amounts of energy to our ecosystems.

Type: Tutorial

What Causes Antibiotic Resistance?:

This short video describes the process of antibiotic resistance. Right now, you are inhabited by trillions of micro organisms. Many of these bacteria are harmless (or even helpful!), but there are a few strains of ‘super bacteria' that are pretty nasty -- and they're growing resistant to our antibiotics. Why is this happening? Kevin Wu details the evolution of this problem that presents a big challenge for the future of medicine.

Type: Tutorial

The Case of the Vanishing Honeybees:

In the past decade, the US honeybee population has been decreasing at an alarming and unprecedented rate. While this is obviously bad news for honeypots everywhere, bees also help feed us in a bigger way -- by pollinating our nation's crops. Emma Bryce investigates potential causes for this widespread colony collapse disorder.

Type: Tutorial

The Secret Life of Plankton:

This short video opens up the oceans' microscopic ecosystem, revealing its beauty and complexity. Footage from the Plankton Chronicles Project is used to create a video designed to ignite wonder and curiosity about this hidden world that underpins our own food chain.

Type: Tutorial

Interactive Carbon Lab:

This lab simulation will allow you to explore how carbon circulates through the environment. Through data collection and analysis, you will experiment with the impact that humans are having on the cycling of carbon and make data based predictions on how these impacts may change environmental outcomes to the year 2100.

Type: Tutorial

Malaria: Human Host:


When a malaria-carrying mosquito bites a human host, the malaria parasite enters the bloodstream, multiplies in the liver cells, and is then released back into the bloodstream, where it infects and destroys red blood cells. This animation will help you to understand the process of malarial infection.

Type: Tutorial

Refraction of Light:

This resource explores the electromagnetic spectrum and waves by allowing the learner to observe the refraction of light as it passes from one medium to another, study the relation between refraction of light and the refractive index of the medium, select from a list of materials with different refractive indicecs, and change the light beam from white to monochromatic and observe the difference.

Type: Tutorial

Human Eye Accommodation:

  • Observe how the eye's muscles change the shape of the lens in accordance with the distance to the object being viewed
  • Indicate the parts of the eye that are responsible for vision
  • View how images are formed in the eye

Type: Tutorial

Concave Spherical Mirrors:

  • Learn how a concave spherical mirror generates an image
  • Observe how the size and position of the image changes with the object distance from the mirror
  • Learn the difference between a real image and a virtual image
  • Learn some applications of concave mirrors

Type: Tutorial

Convex Spherical Mirrors:

  • Learn how a convex mirror forms the image of an object
  • Understand why convex mirrors form small virtual images
  • Observe the change in size and position of the image with the change in object's distance from the mirror
  • Learn some practical applications of convex mirrors

Type: Tutorial

Color Temperature in a Virtual Radiator:

  • Observe the change of color of a black body radiator upon changes in temperature
  • Understand that at 0 Kelvin or Absolute Zero there is no molecular motion

Type: Tutorial

Solar Cell Operation:

This resource explains how a solar cell converts light energy into electrical energy. The user will also learn about the different components of the solar cell and observe the relationship between photon intensity and the amount of electrical energy produced.

Type: Tutorial

Electromagnetic Wave Propagation:

  • Observe that light is composed of oscillating electric and magnetic waves
  • Explore the propagation of an electromagnetic wave through its electric and magnetic field vectors
  • Observe the difference in propagation of light of different wavelengths

Type: Tutorial

Basic Electromagnetic Wave Properties:

  • Explore the relationship between wavelength, frequency, amplitude and energy of an electromagnetic wave
  • Compare the characteristics of waves of different wavelengths

Type: Tutorial

Geometrical Construction of Ray Diagrams:

  • Learn to trace the path of propagating light waves using geometrical optics
  • Observe the effect of changing parameters such as focal length, object dimensions and position on image properties
  • Learn the equations used in determining the size and locations of images formed by thin lenses

Type: Tutorial

Video/Audio/Animations

Will an Ice Cube Melt Faster in Freshwater or Saltwater?:

With an often unexpected outcome from a simple experiment, students can discover the factors that cause and influence thermohaline circulation in our oceans. In two 45-minute class periods, students complete activities where they observe the melting of ice cubes in saltwater and freshwater, using basic materials: clear plastic cups, ice cubes, water, salt, food coloring, and thermometers. There are no prerequisites for this lesson but it is helpful if students are familiar with the concepts of density and buoyancy as well as the salinity of seawater. It is also helpful if students understand that dissolving salt in water will lower the freezing point of water. There are additional follow up investigations that help students appreciate and understand the importance of the ocean's influence on Earth's climate.

Type: Video/Audio/Animation

Birds of Paradise: Competition among birds:

This video shows mating displays and courtship behavior of Birds of Paradise. These birds display bright colors and visually stunning behaviors during courtship. 

Type: Video/Audio/Animation

Mechanisms of Evolution:

This TED Ed video explains the mechanisms of evolutionary change: change in population size, sexual selection, mutation, gene flow, and natural selection.

Type: Video/Audio/Animation

Inquiry and Ocean Exploration:

Ocean explorer Robert Ballard gives a TED Talk relating to the mysteries of the ocean, and the importance of its continued exploration.

Type: Video/Audio/Animation

Photosynthesis:

  • Observe the photosynthesis mechanism in the plant
  • Learn about the main chemical reactions that takes place during photosynthesis
  • Learn how solar energy is converted into chemical energy

Type: Video/Audio/Animation

Science Crossword Puzzles:

A collection of crossword puzzles that test the knowledge of students about some of the terms, processes, and classifications covered in science topics

Type: Video/Audio/Animation

Graphing Lines 1:

Khan Academy video tutorial on graphing linear equations: "Algebra: Graphing Lines 1"

Type: Video/Audio/Animation

Hardy-Weinberg Principle:

This video describes the Hardy-Weinberg Principle. It is fairly entertaining mostly due to the narration of the instructor.

Type: Video/Audio/Animation

Evolving Ideas: Isn't evolution just a theory?:

This video examines the vocabulary essential for understanding the nature of science and evolution and illustrates how evolution is a powerful, well-supported scientific explanation for the relatedness of all life. A clear definition and description of scientific theory is given.

Type: Video/Audio/Animation

Mount St. Helens: Rising From the Ashes :

In this NSF video and reading selection evolutionary biologist and ecologist John Bishop documents the return of living things to Mount St. Helens after the largest landslide in recorded history. This is a rare opportunity for scientists to get to study a devastated area and how it comes back from scratch in such detail.

Type: Video/Audio/Animation

Citizen Science:

In this National Science Foundation video and reading selection lab ecologist Janis Dickinson explains how she depends on citizen scientists to help her track the effects of disease, land-use change and environmental contaminants on the nesting success of birds.

Type: Video/Audio/Animation

Pocket Mouse Evolution:

This simulation shows the spread of a favorable mutation through a population of pocket mice. Even a small selective advantage can lead to a rapid evolution of the population.

Type: Video/Audio/Animation

Introducing Green Chemistry: The Science of Solutions:

This lesson introduces students to Green Chemistry, the design of chemical products and processes that reduce or eliminate the use and/or the generation of hazardous substances. Green chemistry is a proactive approach to pollution prevention that teaches chemists how to develop products and materials in a manner that does not use hazardous substances, thus avoiding much waste, hazards and associated costs. The goal of this lesson is to introduce students to the 12 Principles of Green Chemistry and how they relate to a chemical process. These principles provide a framework for scientists, engineers and chemistry students to use when designing new materials, products, processes, and systems. The Principles focus on sustainable design criteria and have proven to be the source of innovative solutions to a wide range of problems. Through this lesson, students will also use weight and measurement to understand the concept of a recipe as it is applied to a chemical process and think critically about that process and how it might be improved. Students will be asked to use a wasteful, inefficient procedure to make glue and be challenged to improve the procedure-during which they will unknowingly use the 12 Principles. Before starting this lesson, students should have been introduced to the periodic table and properties of matter. The estimated time for this lesson is 50-60 minutes. 

Type: Video/Audio/Animation

Variation Is Essential: How Does Variation Within a Population Affect the Survival of a Species?:

This is a lesson about phenotypical variation within populations and how these differences are essential for biological evolution. Students will use a model organism (in this case, kidney beans) to explore variation patterns and subsequently connect these differences to artificial & natural selection. The NGSS’ CrossCutting Concepts and Science & Engineering Practices are embedded throughout the lesson.

The main learning objectives are:

  • Using a model (kidney beans) to explore the natural variations within a population.
  • Measuring differences between individuals in a population (population of beans).
  • Describing how genetic/phenotypic variation is a key part of biological evolution because it is a prerequisite for natural selection.
  • Demonstrating in which ways genetic variation is advantageous to a population because it enables some individuals to adapt to the environment while maintaining the survival of the population.

The NGSS Performance Expectations covered are HS-LS4-2. & HS-LS4-4.

Type: Video/Audio/Animation

Virtual Manipulatives

Slope Slider:

In this activity, students adjust slider bars which adjust the coefficients and constants of a linear function and examine how their changes affect the graph. The equation of the line can be in slope-intercept form or standard form. This activity allows students to explore linear equations, slopes, and y-intercepts and their visual representation on a graph. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

Type: Virtual Manipulative

Graphing Equations Using Intercepts:

This resource provides linear functions in standard form and asks the user to graph it using intercepts on an interactive graph below the problem. Immediate feedback is provided, and for incorrect responses, each step of the solution is thoroughly modeled.

Type: Virtual Manipulative

Split Brain Experiments:

The split brain experiments revealed that the right and the left hemisphere in the brain are good at different things. For instance, the right hemisphere is good at space perception tasks and music while the left is good at verbal and analytic tasks. This game guides students through some examples of the split-brain phenomenon and how the differences are understood.

Type: Virtual Manipulative

Graphing Lines:

Allows students access to a Cartesian Coordinate System where linear equations can be graphed and details of the line and the slope can be observed.

Type: Virtual Manipulative

Data Flyer:

Using this virtual manipulative, students are able to graph a function and a set of ordered pairs on the same coordinate plane. The constants, coefficients, and exponents can be adjusted using slider bars, so the student can explore the affect on the graph as the function parameters are changed. Students can also examine the deviation of the data from the function. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

Type: Virtual Manipulative

Function Flyer:

In this online tool, students input a function to create a graph where the constants, coefficients, and exponents can be adjusted by slider bars. This tool allows students to explore graphs of functions and how adjusting the numbers in the function affect the graph. Using tabs at the top of the page you can also access supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

Type: Virtual Manipulative

Natural Selection:

Students will explore natural selection by controlling the environment and causing mutations in bunnies. This will demonstrate how natural selection works in nature. They will have the opportunity to throw in different variables to see what will make their species of rabbit survive.

Type: Virtual Manipulative

Curve Fitting:

With a mouse, students will drag data points (with their error bars) and watch the best-fit polynomial curve form instantly. Students can choose the type of fit: linear, quadratic, cubic, or quartic. Best fit or adjustable fit can be displayed.

Type: Virtual Manipulative

Equation Grapher:

This interactive simulation investigates graphing linear and quadratic equations. Users are given the ability to define and change the coefficients and constants in order to observe resulting changes in the graph(s).

Type: Virtual Manipulative

Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this course.
Integrate Standards for Mathematical Practice (MP) as applicable.
  • MAFS.K12.MP.1.1 Make sense of problems and persevere in solving them.
  • MAFS.K12.MP.2.1 Reason abstractly and quantitatively.
  • MAFS.K12.MP.3.1 Construct viable arguments and critique the reasoning of others.
  • MAFS.K12.MP.4.1 Model with mathematics.
  • MAFS.K12.MP.5.1 Use appropriate tools strategically.
  • MAFS.K12.MP.6.1 Attend to precision.
  • MAFS.K12.MP.7.1 Look for and make use of structure.
  • MAFS.K12.MP.8.1 Look for and express regularity in repeated reasoning.