M/J Comprehensive Science 1 Accelerated Honors   (#2002055)

Version for Academic Year:

Course Standards

General Course Information and Notes

General Notes

Laboratory investigations that include the use of scientific inquiry, research, measurement, problem solving, laboratory apparatus and technologies, experimental procedures, and safety procedures are an integral part of this course. The National Science Teachers Association (NSTA) recommends that at the middle school level, all students should have multiple opportunities every week to explore science laboratory investigations (labs). School laboratory investigations are defined by the National Research Council (NRC) as an experience in the laboratory, classroom, or the field that provides students with opportunities to interact directly with natural phenomena or with data collected by others using tools, materials, data collection techniques, and models (NRC, 2006, p. 3). Laboratory investigations in the middle school classroom should help all students develop a growing understanding of the complexity and ambiguity of empirical work, as well as the skills to calibrate and troubleshoot equipment used to make observations. Learners should understand measurement error; and have the skills to aggregate, interpret, and present the resulting data (NRC 2006, p. 77; NSTA, 2007).

Honors and Advanced Level Course Note: Advanced courses require a greater demand on students through increased academic rigor.  Academic rigor is obtained through the application, analysis, evaluation, and creation of complex ideas that are often abstract and multi-faceted.  Students are challenged to think and collaborate critically on the content they are learning. Honors level rigor will be achieved by increasing text complexity through text selection, focus on high-level qualitative measures, and complexity of task. Instruction will be structured to give students a deeper understanding of conceptual themes and organization within and across disciplines. Academic rigor is more than simply assigning to students a greater quantity of work.

Special Notes: 

Instructional Practices 
Teaching from a range of complex text is optimized when teachers in all subject areas implement the following strategies on a routine basis:

  1. Ensuring wide reading from complex text that varies in length.
  2. Making close reading and rereading of texts central to lessons.
  3. Emphasizing text-specific complex questions, and cognitively complex tasks, reinforce focus on the text and cultivate independence.
  4. Emphasizing students supporting answers based upon evidence from the text.
  5. Providing extensive research and writing opportunities (claims and evidence).

Science and Engineering Practices (NRC Framework for K-12 Science Education, 2010)

  • Asking questions (for science) and defining problems (for engineering).
  • Developing and using models.
  • Planning and carrying out investigations.
  • Analyzing and interpreting data.
  • Using mathematics, information and computer technology, and computational thinking.
  • Constructing explanations (for science) and designing solutions (for engineering).
  • Engaging in argument from evidence.
  • Obtaining, evaluating, and communicating information.

Florida’s Benchmarks for Excellent Student Thinking (B.E.S.T.) Standards
This course includes Florida’s B.E.S.T. ELA Expectations (EE) and Mathematical Thinking and Reasoning Standards (MTRs) for students. Florida educators should intentionally embed these standards within the content and their instruction as applicable. For guidance on the implementation of the EEs and MTRs, please visit https://www.cpalms.org/Standards/BEST_Standards.aspx and select the appropriate B.E.S.T. Standards package.

English Language Development ELD Standards Special Notes Section:
Teachers are required to provide listening, speaking, reading and writing instruction that allows English language learners (ELL) to communicate information, ideas and concepts for academic success in the content area of Science. For the given level of English language proficiency and with visual, graphic, or interactive support, students will interact with grade level words, expressions, sentences and discourse to process or produce language necessary for academic success The ELD standard should specify a relevant content area concept or topic of study chosen by curriculum developers and teachers which maximizes an ELL's need for communication and social skills. To access an ELL supporting document which delineates performance definitions and descriptors, please click on the following link: https://cpalmsmediaprod.blob.core.windows.net/uploads/docs/standards/eld/sc.pdf

General Information

Course Number: 2002055
Course Path:
Abbreviated Title: M/J COMPSCI1 ACC HON
Course Length: Year (Y)
Course Attributes:
  • Class Size Core Required
Course Level: 3
Course Status: State Board Approved
Grade Level(s): 6,7,8

Student Resources

Vetted resources students can use to learn the concepts and skills in this course.

Original Student Tutorials

Our Interacting Earth:

Explore the connections and interactions between spheres, including the lithosphere, atmosphere, biosphere, hydrosphere, and cryosphere, on our ever-changing Earth in this interactive tutorial.

Type: Original Student Tutorial

Which Science Topic Would You Choose?:

Learn how scientific research is done based society's goals and what current group needs as you complete this interactive tutorial.

Type: Original Student Tutorial

Unbalanced Forces for the Win!:

Learn how unbalanced forces cause a change in speed, direction or both using sports-themed, interactive tutorial. 

Type: Original Student Tutorial

It All Makes Cents! The Two Rs in Science Research: Repetition and Replication :

Learn the importance of replication and repetition in science as you investigate the composition of a penny with this interactive tutorial. 

Type: Original Student Tutorial

Science Innovation: Using Tools in New Ways to Make Discoveries:

Learn how innovation is important in moving scientific thinking forward with this interactive tutorial.

Type: Original Student Tutorial

Help! What Is Infecting my Body?! Part 2:

Take a microscopic journey into the immune system and the world of infectious fungi and parasites.

This is Part 2 in a two-part series of interactive tutorials. Click  to open Part 1.

Type: Original Student Tutorial

Help! What Is Infecting My Body?! Part 1:

Take a microscopic journey into the immune system and the living and non-living worlds of bacteria and viruses.

This is Part 1 in a two-part series of interactive tutorials. Click to open Part 2.

Type: Original Student Tutorial

Stop! In the Name of Scientific Laws:

Explore how we define and describe scientific phenomena using scientific laws in this interactive tutorial.

Type: Original Student Tutorial

Viral Infections and Pandemics:

Learn about viruses that can infect the human body, how they can cause epidemics and pandemics, and how best to protect yourself against infectious diseases like COVID-19 in this interactive tutorial.

Type: Original Student Tutorial

Math Models and Social Distancing:

Learn how math models can show why social distancing during a epidemic or pandemic is important in this interactive tutorial.

Type: Original Student Tutorial

As the Scientific Theory Turns:

Learn about scientific theories and how they can change in this space-themed, interactive tutorial

Type: Original Student Tutorial

Let's Investigate!:

Investigate the benefits and limitations of experiments, observational studies, and comparative studies with this interactive tutorial.

Type: Original Student Tutorial

Soccer Science: Why Experiments Need to be Replicable:

Help Ryan revise his soccer science experiment to make it replicable. In this interactive tutorial, you'll learn what "replicable" means and why it's so important in science.

 

Type: Original Student Tutorial

The Atom Part 2: The History of the Atom:

Follow the story of how the model of the atom has changed over time in this interactive tutorial.

Type: Original Student Tutorial

The Atom Part 1: Big Things Come in Small Packages:

Explore atoms--the smallest unit of matter--and how they are made up of protons, neutrons, and electrons in this interactive tutorial.

Type: Original Student Tutorial

Class Hamster Science Part 3: Experimental Testing & Results:

Join our class hamster experiment to learn about making hypotheses, organizing and analyzing data into graphs, and making inferences in this interactive tutorial.

Type: Original Student Tutorial

Class Hamster Science Part 2: Research & Experimental Design:

Join our class hamster experiment and learn to identify independent, dependent, and controlled variables in this interactive tutorial.

Type: Original Student Tutorial

Class Hamster Science: Part 1:

Join the investigation into our class hamster's respiration! In this interactive tutorial, we will explore different methods of investigation, hypothesize, interpret data, determine appropriate conclusions, and make predictions.

Type: Original Student Tutorial

Move It!:

Learn about kinetic and potential energy as we explore several sporting activities in this interactive tutorial.  

Type: Original Student Tutorial

Expedition of the Earth:

Learn how scientific knowledge is open to change and how the knowledge about the Earth's surface has changed in the past 100 years as you complete this interactive tutorial.

Type: Original Student Tutorial

Balancing the Machine:

Use models to solve balance problems on a space station in this interactive, math and science tutorial. 

Type: Original Student Tutorial

Science Changes:

Explore the processes of science and how it changes over time. This interactive tutorial uses the historical development of The Cell Theory to illustrate these ideas.

Type: Original Student Tutorial

Detective PEKE and the Energy Transformers:

Explore kinetic and potential energy and how energy is conserved in this interactive tutorial.

Type: Original Student Tutorial

Cells: Alike but Different:

Cells are very diverse, but are the foundation of all living things. Take a look at different types of cells and learn how they have similar needs. Cell are alike, but different!

Type: Original Student Tutorial

The Sun Fuels Our Weather:

The Sun is integral in keeping us warm, but did you know the other ways that the Sun is essential to Earth? Learn about how the Sun is important in fueling our weather on Earth. 

Type: Original Student Tutorial

States of Matter: Phase Transitions:

Explore how heat changes the temperature or the state of matter of a material in this interactive tutorial.

Type: Original Student Tutorial

Heat Transfer Processes:

Explore the three types of heat transfer that occur in our world as you complete this interactive tutorial.

Type: Original Student Tutorial

The Hunt for Exoplanets:

Learn how science relies on creative and innovative thinking as we explore the science of discovering exoplanets in this interactive tutorial. Science is a problem solving endeavor as we try and figure out and learn new things. The answers are hard to find, but if we keep asking questions and building on what we know, then we can solve problems to things we once were thought were impossible!

 

Type: Original Student Tutorial

Science Research: Developing a Hypothesis:

Learn how to write an effective hypothesis with sharks as a focus in this interactive tutorial. A hypothesis should be testable and falsifiable. 

Type: Original Student Tutorial

Science Is by Everyone and for Everyone:

Learn about the amazing science discoveries by people from all over the world and all walks of life. In this interactive tutorial, you'll see that science is by and for everyone!

Type: Original Student Tutorial

Exploring the Periodic Table, Part 2: Groups:

Explore the organization of elements into groups on the periodic table and what the group location indicates about an element's atomic structure. 

This is part 2 of 2 in a series of tutorials on the periodic table. Click below to open part 1.

Type: Original Student Tutorial

Exploring the Periodic Table Part 1: Periods:

Explore the organization of elements on the Periodic Table and pay special attention to energy levels of elements that share periods in this interactive tutorial.

This is part 1 of 2 in a series of tutorials on the periodic table. Click below to open part 2.

Type: Original Student Tutorial

The Notion of Motion, Part 3 - Average Velocity:

Describe the average velocity of a dune buggy using kinematics in this interactive tutorial. You'll calculate displacement and average velocity, create and analyze a velocity vs. time scatterplot, and relate average velocity to the slope of position vs. time scatterplots. 

This is part 3 of 3 in a series that mirrors inquiry-based, hands-on activities from our popular workshops.

  • Click  to open The Notion of Motion, Part 1 - Time Measurements
  • Click HERE to open The Notion of Motion, Part 2 - Position vs Time

Type: Original Student Tutorial

Human Body Systems: The Immune System (Part 8 of 9):

Help Igor learn about the immune system as he works to build Dr. Frankenstein’s creature!

This is part 8 of 9, in a series of interactive tutorials on human body systems. Click below to open the others in the series.

Type: Original Student Tutorial

Human Body Systems and Homeostasis (Part 9 of 9):

Learn how human body systems work together to achieve homeostasis, a balance between their external and internal conditions.

This is part 9 of 9, in a series of interactive tutorials on human body systems. Click below to open the others in the series.

Type: Original Student Tutorial

Investigating Plant and Animal Cells:

Compare and contrast plant and animal cells in this interactive tutorial. You'll learn about the structure and function of major organelles of cells, including the cell wall, cell membrane, nucleus, cytoplasm, chloroplasts, mitochondria, and vacuoles. 

Type: Original Student Tutorial

Science Research: Writing a Conclusion:

Learn how to write a valid conclusion from a scientific investigation. In this interactive tutorial, you'll also learn how to answer questions using scientific reasoning. 

Type: Original Student Tutorial

Human Body Systems: The Excretory System (Part 6 of 9):

Discover how the excretory system removes waste products from your body. 

This is part 6 of 9, in a series of interactive tutorials on human body systems. Click below to open the others in the series.

Type: Original Student Tutorial

Infectious Agents: Agent Icky:

Help Agent Icky compare and contrast types of infectious agents that may infect the human body, including viruses, bacteria, fungi, and parasites. By completing this interactive tutorial, maybe you can be a Microbe Buster one day too!

Type: Original Student Tutorial

The Cell Cycle and Mitosis:

Follow the life of a cell in the tightly controlled process called the cell cycle! In this interactive tutorial, you will learn how a single cell gives rise to two identical daughter cells during the cell cycle and mitosis.

Type: Original Student Tutorial

Human Body Systems: The Digestive System (Part 5 of 9):

Chew on facts about the digestive system as you help to bring Dr. Frankenstein's famous creature to life. 

This is part 5 of 9, in a series of interactive tutorials on human body systems. Click below to open the others in the series.

Type: Original Student Tutorial

Human Body Systems: The Reproductive System (Part 7 of 9):

Get answers to your questions about the reproductive systems of biological males and females.

This is part 7 of 9, in a series of interactive tutorials on human body systems. Click below to open the others in the series.

Type: Original Student Tutorial

Mitosis and Cell Division:

Explore the steps of mitosis and cell division in this interactive tutorial, and see how they result in the separation of a cell's genetic material and division of its contents into two identical daughter cells. 

Type: Original Student Tutorial

Human Body Systems: The Circulatory System (Part 3 of 9):

Explore the circulatory system as we bring Frankenstein's creature to life. 

This is part 3 of 9, in a series of interactive tutorials on human body systems. Click below to open the others in the series.

Type: Original Student Tutorial

The Transfer of Heat:

Explore the ways in which heat is transferred and some common examples of each type in our lives in this interactive tutorial.

Type: Original Student Tutorial

Human Body Systems: The Musculoskeletal System (Part 4 of 9):

Learn how the musculoskeletal system enables us to run, dance, even chew! 

This is part 4 of 9, in a series of interactive tutorials on human body systems. Click below to open the others in the series.

Type: Original Student Tutorial

Human Body Systems: The Respiratory System (Part 2 of 9):

Investigate the respiratory system in this interactive tutorial as you help Dr. Frankenstein continue to build his Creature. 

This is part 2 of 9, in a series of interactive tutorials on human body systems. Click below to open the others in the series.

Type: Original Student Tutorial

Tear Me Down and Build Me Up: The Story of Weathering, Erosion, and Deposition:

Weathering, erosion and deposition are driving forces in the development of land formations. Explore them in this interactive tutorial.

Type: Original Student Tutorial

Human Body Systems: The Nervous System (Part 1 of 9):

Learn how the nervous system serves as the bridge between the outside world and our bodies.

This is part 1 of 9, in a series of interactive tutorials on human body systems. Click below to open the others in the series.

Type: Original Student Tutorial

Mixtures and Pure Substances:

Learn the difference between pure elements, pure compounds, mixtures and solutions in this interactive tutorial.

Type: Original Student Tutorial

Types of Forces:

Examine contact and non-contact forces such as gravity, electrical, and magnetic forces in this interactive tutorial.

Type: Original Student Tutorial

Gravity:

Learn about gravity and its relationship with mass and distance in this interactive tutorial.

Type: Original Student Tutorial

The Notion of Motion, Part 2 - Position vs Time:

Continue an exploration of kinematics to describe linear motion by focusing on position-time measurements from the motion trial in part 1. In this interactive tutorial, you'll identify position measurements from the spark tape, analyze a scatterplot of the position-time data, calculate and interpret slope on the position-time graph, and make inferences about the dune buggy’s average speed

Type: Original Student Tutorial

The Notion of Motion, Part 1 - Time Measurements:

Begin an exploration of kinematics to describe linear motion.  You'll observe a motorized dune buggy, describe its motion qualitatively, and identify time values associated with its motion in the interactive lesson.

Type: Original Student Tutorial

Tracking Distance Over Time:

Learn to measure, graph, and interpret the relationship of distance over time of a sea turtle moving at a constant speed.

Type: Original Student Tutorial

Models in Science:

Learn to identify models and their use in science with this interactive tutorial.

Type: Original Student Tutorial

Classifying Living Things:

Learn how and why plants, animals, and other organisms are classified as you complete this interactive tutorial.

Type: Original Student Tutorial

Scientific Laws:

Learn to identify the importance of scientific laws and how they are different from societal laws.

Type: Original Student Tutorial

Cooking with Chef Ragu: Acids, Bases, and Salts:

Join Chef Ragu as he learns about acids, bases, and salts while he cooks up something special. In this interactive tutorial you will compare and classify the properties of compounds that are acids, bases, and salts and identify basic examples of these compounds.

Type: Original Student Tutorial

The Cell Theory:

Learn to identify and explain the three parts of the Cell Theory in this interactive, bee-themed tutorial.

Type: Original Student Tutorial

Our Atmospheric Blanket:

Explore how our atmosphere both insulates our planet and protects life on Earth in this interactive tutorial.

Type: Original Student Tutorial

Cell Types:

Learn how to classify cells as prokaryotic or eukaryotic and distinguish eukaryotic cells as plant or animal.

Type: Original Student Tutorial

Levels of Organization:

Learn how to identify explicit evidence and understand implicit meaning in a text.

You should be able to describe the hierarchical organization of living things from the atom, to the molecule, to the cell, to the tissue, to the organ, to the organ system, and to the organism.

Type: Original Student Tutorial

Classifying and Comparing Physical Properties:

Learn to identify physical properties, compare and contrast substances based on their physical properties. In this interactive tutorial, you'll focus on density and determine whether physical properties have the ability to change.

Type: Original Student Tutorial

Natural Disasters:

Learn to identify several types of natural disasters that occur in Florida and how these disasters can affect people living there as you complete this interactive tutorial.

Type: Original Student Tutorial

Cellular Transport: The Role of the Cell Membrane:

Learn about the function of the cell membrane as a selective barrier that moves material into and out of the cell to maintain homeostasis with this interactive tutorial.

Type: Original Student Tutorial

Mass and Weight: What's the Difference?:

Differentiate between weight and mass, recognizing that weight is the amount of gravitational pull on an object and is distinct though proportional to mass. In this interactive tutorial you'll help a curious chicken learn more about this important topic.

Type: Original Student Tutorial

Weather vs. Climate:

Learn to distinguish between weather and climate in this interactive tutorial.

Type: Original Student Tutorial

Atoms Make Up Everything:

Learn to demonstrate that there are a finite number of elements that combine to form all existing compounds, whether living or non-living, and in any state of matter.

Type: Original Student Tutorial

Earth's Spheres:

Explore and compare the different spheres of the Earth system, including the geosphere, biosphere, atmosphere, hydrosphere and cryosphere. In this interactive tutorial, you'll also identify specific examples of the interactions between the Earth's spheres.

Type: Original Student Tutorial

Measuring Amounts of "Stuff": Exploring Density:

Learn to find the density (how many g/cm3) of three different objects, and explain what that number means with this interactive tutorial.

Type: Original Student Tutorial

Water in Our World:

Learn about the water cycle on Earth and how it affects weather and climate with this interactive tutorial.

Type: Original Student Tutorial

What Causes Weather?:

Explore the components of weather, including temperature, humidity, precipitation, wind direction and wind speed. In this interactive tutorial, you'll relate the jet stream and ocean circulation to the causes of these conditions, which are caused by the energy from the sun.

Type: Original Student Tutorial

Your Ice Cream Is Moving:

Learn to sequence a series of diagrams to create a model of a substance transitioning from a solid state to a liquid state in this interactive tutorial.

Type: Original Student Tutorial

Educational Games

A Touch of Class:

This interactive game covers the classification and characteristics of various plants and animals.

Type: Educational Game

Cell Structure Crossword Puzzle:

This cell structure crossword puzzle uses vocabulary from CELLS alive! If you have trouble and need a hint, use the "Search this Site" engine in the lefthand menu. Good Luck!

Type: Educational Game

Image/Photograph

Thunderstorms, Tornadoes, Lightning: A Preparedness Guide:

This PDF included at this site has information about family preparedness plans and safety rules, and information about thunderstorms, tornadoes, and lightning such as facts, when and where they occur, and how they form.

Type: Image/Photograph

Lesson Plan

Sea Level Rise: The Ocean's Uplifting Experience:

The purpose of this lesson is to introduce students to the concept of sea level rise as it occurs through climate change by having them examine 3 specific parameters:  ice distribution, thermal expansion, and analyzing and interpreting data.  The lesson and activities within the lesson were designed using the three dimensions of the Framework for K-12 Science Education and the Next Generation Science Standards – specifically crosscutting concepts, science and engineering practices, and disciplinary core ideas. While there isn’t any required pre-requisite learning required for this lesson, a general understanding of sea-level rise, glaciers, and climate may be beneficial to students. During classroom breaks, pairs of students will develop/discuss their models, revise their interpretations of their models or data, and think-pair-share their thoughts on the investigation segments.

Type: Lesson Plan

Perspectives Video: Experts

MicroGravity Sensors & Statistics:

Statistical analysis played an essential role in using microgravity sensors to determine location of caves in Wakulla County.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Severe Weather Formation:

In a fog about weather patterns? This climatologist will demystify the topic for you.

Type: Perspectives Video: Expert

Physical and Chemical Changes in Food :

Don't overreact when this chemist describes physical and chemical changes that you can observe in your own kitchen!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Perspectives Video: Professional/Enthusiasts

Properties of Materials:

This discussion about the physical properties of flamenco guitars is full of good vibes.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Making Candy: Energy Transfer:

Candy production requires lots of heat. If you can't stand it, get out of the kitchen so you can watch this video on the couch instead.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

How Material Properties affect Audio Recordings:

Want a clean sound in your recording? Oxidation will test your mettle. Make sure you choose the right material for the job.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

See the Four States of Matter in Welding!:

A welder wields a plasma torch to cut solid metal like a hot knife through butter. It's one-stop shopping to see all four states of matter.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Oceans and Energy Transfer:

Dive deep into science as an oceanographer describes conduction, convection, and radiation and their relationship to oceanic systems.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Blacksmithing and Heat Transfer:

Forge a new understanding of metallurgy and heat transfer by learning how this blacksmith and collier make nails.

Type: Perspectives Video: Professional/Enthusiast

Presentation/Slideshows

A Walk Through Time:

This interactive tutorial explores the evolution of time measurement through the ages, beginning with Stonehenge and ancient calendar systems. It progresses through sun and water clocks, mechanical and quartz-movement clocks, and atomic clocks.

Type: Presentation/Slideshow

What is Science?:

Resource provides a succinct overview of the nature of science; what science is and is not. Information includes the aims of scientific pursuits, principles, process and thinking.

Type: Presentation/Slideshow

Water Science for Schools:

This interactive site allows you to learn all about the water cycle. The site provides hydrology data, examples, pictures, definitions, and more in multiple languages.

Type: Presentation/Slideshow

Text Resources

Mitosis Online Activity:

Mitosis internet exploration: Identifying the different stages of mitosis in plant and animal cells.

Type: Text Resource

Sinkholes:

Sink your teeth into learning about how sinkholes form. In the video clip, three students investigate sinkholes to determine their cause, and then construct a functioning model. Directions for replicating this model, text and student activities are included.

Type: Text Resource

Why Isn't Pluto A Planet?:

This Frequently Asked Question page can be used by educators and students as a scientific resource to answer the question, "Why isn't Pluto a planet?". From the International Astronomical Union, the definitive answer from the governing body that classified Pluto as a dwarf planet.

Type: Text Resource

Heat Transfer :

This is a great resource to review heat transfer through conduction, convection and radiation.

Type: Text Resource

American Elements:

This web site features an interactive periodic chart that provides information on the elements, including a description, physical and thermal properties, abundance, isotopes, ionization energy, the element's discoverer, translations of element names into several languages, and bibliographic information on research-and-development publications involving the element. Additional information includes technical information and information on manufactured products for elemental metals, metallic compounds, and ceramic and crystalline products. The American Elements company manufactures engineered and advanced material products.

Type: Text Resource

Tutorials

Gravitational Forces: Brick vs. Feather:

Would a brick or feather fall faster? What would fall faster on the moon?


Type: Tutorial

Mitosis and DNA Replication:

This tutorial discusses the process of mitosis in detail, describing the events that occur during interphase, prophase, metaphase, anaphase, and telephase. The process of DNA replication is also explained.

Type: Tutorial

Cell Structure and Function:

This tutorial is a basic unit on cellular biology. The unit introduces the cell theory and its parts. It also discusses the importance of microscopes while studying cells. This presentation describes animal and plant cells in detail and discusses the organelles found in each.

Type: Tutorial

Mineral Transport in Plants:

This tutorial will help you to understand how minerals are absorbed by the root hair in plants.

Type: Tutorial

Cell Membrane Function:

This tutorial will help you to understand how a molecule can be transported across a membrane against a concentration gradient. Cellular membranes function to keep the internal environment of the cell distinct from the external environment. Concentrations of many molecules differ across cellular membranes. This animation shows the function of the sodium potassium pump.

Type: Tutorial

Water Transport in Plants:

This tutorial will help you to understand how plant cells intake water. This animation shows how water is transported from the root systems of plants upwards to the leaves.

Type: Tutorial

Diffusion and Osmosis:

This Khan Academy tutorial guides you through the processes of diffusion and osmosis while explaining the vocabulary and terminology involved in detail.

Type: Tutorial

Introduction to the Cell Membrane:

This Khan Academy tutorial addresses the importance of the phospholipid bilayer in the structure of the cell membrane. The types of molecules that can diffuse through the cell membrane are also discussed.

Type: Tutorial

Parts of the Cell:

This Khan Academy tutorial describes the differences between prokaryotic and eukaryotic cells. It then goes on to discuss in detail the structures and their functions found in the eukaryotic cell.

Type: Tutorial

Proton Pump:

This tutorial will help you to understand how a concentration gradient across a membrane is used. When a molecule or an ion is moved across a membrane from an area of low concentration to an area of high concentration then a gradient is generated. This gradient can be chemical or it can also create a difference in electrical charge across the membrane if ions are involved. The proton pump generates an electrical and chemical gradient that can be used to create ATP which can drive a large number of different biochemical reactions.

Type: Tutorial

Cell Membrane Proteins:

Students will learn about the different types of proteins found in the cell membrane while viewing this Khan Academy tutorial video.

Type: Tutorial

Bacteria:

This video from the Khan Academy introduces the symbiotic relationship between the many bacteria that live inside the human body. The basics of bacteria structure, reproduction, and bacterial infections are discussed.

Type: Tutorial

Sodium Potassium Exchange Pump:

This tutorial will help you to understand how sodium and potassium ions are pumped in opposite directions across a membrane building up a chemical and electrical gradient for each. These gradients can be used to drive other transport processes.

Type: Tutorial

How Osmosis Works:

This tutorial will help you to understand how the concentration of molecules in solution in water can cause the movement of water across a membrane which is also known as osmosis. Preventing the loss or gain of too much water through osmosis is often an important challenge for cells.

Type: Tutorial

Active Transport and the Sodium-Potassium Exchange Pump:

This tutorial will help you to understand the process of active transport. Sodium and potassium ions are pumped in opposite directions across the membrane building up a chemical and electrical gradient for each.

Type: Tutorial

Regulated Secretion:

This online tutorial will help you to understand the process of regulated secretion. In regulated secretion, proteins are secreted from a cell in large amounts when a specific signal is detected by the cell. The specific example used in this tutorial is the release of insulin after a glucose signal enters a pancreatic beta cell.

Type: Tutorial

Rock 'n Roll Weather:

This resource is a basic introduction to the types of severe weather. Students will learn about the formation of tornadoes, lightning, floods, and hurricanes. Images of each weather system also accompany each section.

Type: Tutorial

Human Chromosomes:

This tutorial will allow the student to model the process of making a karyotype which is a picture of all the chromosomes in a cell. Students will match each pair of chromosomes by their size, the size and location of chromosome bands, and location of the centromere.

Type: Tutorial

Cells vs. Virus: A Battle for Health:

All living things are made of cells. In the human body, these highly efficient units are protected by layer upon layer of defense against icky invaders like the cold virus. Shannon Stiles takes a journey into the cell, introducing the microscopic arsenal of weapons and warriors that play a role in the battle for your health.

Type: Tutorial

Greenhouse Effect:

This video will help the learners with their understanding of atmospheric composition and the greenhouse effect.

Type: Tutorial

Cell Anatomy:

This tutorial will help the learners to learn about the anatomy of the cell. As the learners move the cursor over each cell organelle, they are shown information about that organelle's structure and function.

Type: Tutorial

Prokaryotes, Eukaryotes, & Viruses Tutorial:

This a mostly text resource that provides accurate, straight-forward descriptions of prokaryotes, eukaryotes, and viruses. It could be a great tool to help students compare and contrast organisms with each other and viruses, or a good review passage.

Type: Tutorial

Video/Audio/Animations

Will an Ice Cube Melt Faster in Freshwater or Saltwater?:

With an often unexpected outcome from a simple experiment, students can discover the factors that cause and influence thermohaline circulation in our oceans. In two 45-minute class periods, students complete activities where they observe the melting of ice cubes in saltwater and freshwater, using basic materials: clear plastic cups, ice cubes, water, salt, food coloring, and thermometers. There are no prerequisites for this lesson but it is helpful if students are familiar with the concepts of density and buoyancy as well as the salinity of seawater. It is also helpful if students understand that dissolving salt in water will lower the freezing point of water. There are additional follow up investigations that help students appreciate and understand the importance of the ocean's influence on Earth's climate.

Type: Video/Audio/Animation

Inquiry and Ocean Exploration:

Ocean explorer Robert Ballard gives a TED Talk relating to the mysteries of the ocean, and the importance of its continued exploration.

Type: Video/Audio/Animation

Element Word Scramble:

Students test their knowledge about the names of elements and learn some of their properties through the hint provided with each scrambled word

Type: Video/Audio/Animation

Element Math Game:

Students determine the number of protons, electrons, neutrons, and nucleons for different atoms

Type: Video/Audio/Animation

Element Matching Game:

Students match the names of elements of the periodic table with their symbols

Type: Video/Audio/Animation

Element Flash Cards:

This game tests students' knowledge about elements, such as their symbols, atomic numbers, and names

Type: Video/Audio/Animation

Science Crossword Puzzles:

A collection of crossword puzzles that test the knowledge of students about some of the terms, processes, and classifications covered in science topics

Type: Video/Audio/Animation

Shapes of Molecules:

  • Differentiate between electron pair and molecular geometry
  • Learn how to name electron pair and molecular geometries for molecules with up to six electron groups around the central atom
  • Illustrate how electron pair repulsion affects bond angles

Type: Video/Audio/Animation

Concentration:

  • Explain the concept of concentration
  • Explain the effect of concentration changes on colors of solutions
  • Demonstrate the effect of changing the amount of solute, or solvent, or both on the concentration of the solution
  • Identify a saturated solution

Type: Video/Audio/Animation

Antarctica: A Challenging Work Day:

In this NOVA-adapted video clip, members of a research team deal with the inhospitable climate and other hazards while researching in Antarctica. Many scientists consider the opportunity to do their research in Antarctica a dream come true. The extreme environment and remoteness make it one of the most untouched regions on the planet. There is a treaty that allows more than 20 nations to maintain research facilities, and dedicates the entire continent to peaceful scientific investigation.

Type: Video/Audio/Animation

Towers in the Tempest:

'Towers in the Tempest' is a 4.5 minute narrated animation that explains recent scientific insights into how hurricanes intensify. This intensification can be caused by a phenomenon called a 'hot tower'. For the first time, research meteorologists have run complex simulations using a very fine temporal resolution of 3 minutes. Combining this simulation data with satellite observations enables detailed study of 'hot towers'. The science of 'hot towers' is described using: observed hurricane data from a satellite, descriptive illustrations, and volumetric visualizations of simulation data.

Type: Video/Audio/Animation

27 Storms: Arlene to Zeta:

This video from NASA presents the 2005 hurricane season with actual data that NASA and NOAA satellites measured. Sea surface temperatures, clouds, storm tracks, and hurricane category labels are shown as the hurricane season progresses.

Type: Video/Audio/Animation

Jupiter: Earth's Shield:

More than 155 planets have been found outside of our solar system since the first extra-solar planet was identified in 1995. The search has long been heavily biased towards finding massive planets with short orbits. Now, to find an Earth-like planet, scientists are looking for a planetary setup that is similar to our own, in which a Jupiter-like planet lies a good distance away from its sun. This video segment adapted from NOVA explores how the arrangement of planets in our solar system may have affected the development of life on Earth.

Type: Video/Audio/Animation

Photosynthesis:

This 2-1/2 minute video segment from Interactive NOVA: "Earth" explores the history of plant biology. The video takes the viewer from the earliest scientific hypotheses that plants "eat" dirt, to our present-day understanding of photosynthesis, the process by which plants use the sun's energy to convert carbon dioxide and water into carbohydrates, a storable form of chemical energy.

Type: Video/Audio/Animation

How do Hurricanes Form - NASA Spaceplace:

This site describes how hurricanes (tropical cyclones) form. The site includes text, diagrams, and satellite images in a movie.

Type: Video/Audio/Animation

Solar Wind's Effect on Earth:

The Sun produces a solar wind — a continuous flow of charged particles — that can affect us on Earth. It can, for example, disrupt communications, navigation systems, and satellites. Solar activity can also cause power outages, such as the extensive Canadian blackout in 1989. In this video segment adapted from NASA, learn about solar storms and their effects on Earth.

Type: Video/Audio/Animation

Coffee to Carbon:

This site explores the relationship of the size of the cell and many other common objects, molecules, and atoms. It is an interactive website that shows the scale of the objects in relations to each other. 

Type: Video/Audio/Animation

Photosynthesis animation and other cell processes in animation:

This site has fantastic short Flash animations of intricate cell processes, including photosynthesis and the electron transport chain.

Type: Video/Audio/Animation

Virtual Manipulatives

Build an Atom:

Build an atom out of protons, neutrons, and electrons, and see how the element, charge, and mass change. Then play a game to test your ideas!

Type: Virtual Manipulative

Periodic Table:

This unique periodic table presents the elements in an interesting visual display. Select an element to find an image of the element, a description, history, and even an animation. Other chemical data is linked as a PDF file (requires Acrobat Reader).

Type: Virtual Manipulative

Gas Density:


Density is defined as mass per unit volume. Density of the gases is highly affected by the pressure and the temperature. This module simulates the measurement of the density of a gas sample. Different gaseous compounds and elements are available and the pressure and temperature of the sample can be adjusted. Learners will understand that density of an ideal gas can be doubled by doubling the pressure or by halving the temperature.

Type: Virtual Manipulative

Create Molecular Shape:


This simulation will provide the learners with a chance to increase their understanding of a molecular shape. The learners will be required to follow a "Lewis dot structure" which involves two basic principles:

  1. The shapes of the molecule is determined by the repulsion between electron pairs in the outer shell of the central atom. Both bond pairs and lone pairs must be considered.
  2. Lone pairs repel more than bond pairs.

Type: Virtual Manipulative

Illustrating the process of diffusion :


This virtual manipulative will help the students to understand that osmosis is the movement of water molecules from an area of high concentration across a semipermeable membrane to an area of low concentration. This illustration of the diffusion process will help the students to understand the concept of osmotic pressure which is created by the movement of the water based on their concentration gradient and thus resulting in the difference of the solute concentration.

Type: Virtual Manipulative

Density:

This resource will build the following skills:

  • Describe the relationship of mass and volume to density.
  • Compare objects of same mass and different volume and vice versa.
  • Explain that density of a certain object does not vary with its mass or volume.
  • Measure the volume of an object from fluid displacement.
  • Use density to identify an unknown material.

Type: Virtual Manipulative

Balance Challenge Game:

Play with objects on a teeter totter to learn about balance.

  • Predict how objects of various masses can be used to make a plank balance.
  • Predict how changing the positions of the masses on the plank will affect the motion of the plank
  • Write rules to predict which way plank will tilt when objects are placed on it.
  • Use your rules to solve puzzles about balancing.

Type: Virtual Manipulative

Balancing Chemical Equations:

This activity will allow you to practice balancing a chemical equation. You will have to make sure you are following the law of conservation of mass and recognize what can change to balance an equation.
You can:

  • Balance a chemical equation.
  • Recognize that the number of atoms of each element is conserved in a chemical reaction.
  • Describe the difference between coefficients and subscripts in a chemical equation.
  • Translate from symbolic to molecular representation.

Type: Virtual Manipulative

States of Matter: Basics:

This simulation will allow you to heat, cool and compress atoms and molecules and watch as they change between solid, liquid and gas phase.
Ideas to investigate:

  • Describe characteristics of three states of matter: solid, liquid and gas.
  • Predict how varying the temperature or pressure changes the behavior of particles.
  • Compare particles in the three different phases.
  • Explain freezing and melting with molecular level detail.
  • Recognize that different substances have different properties, including melting, freezing and boiling temperatures.

Type: Virtual Manipulative

Understanding Polarity:

Understanding molecular polarity by changing the electron-negativity of atoms in a molecule to see how it affects polarity. See how the molecule behaves in an electric field. Change the bond angle to see how shape affects polarity. See how it works for real molecules in 3D.

Some learning goals:
•predict bond polarity using electron-negativity values
•indicate polarity with a polar arrow or partial charges
•rank bonds in order of polarity
•predict molecular polarity using bond polarity and molecular shape

Type: Virtual Manipulative

Gas Properties:


Students will pump gas molecules to a box and see what happens as they change the volume, add or remove heat, change gravity, and more. Measure the temperature and pressure, and discover how the properties of the gas vary in relation to each other.

  • Students can predict how changing a variable among pressure, volume, temperature and number influences other gas properties.
  • Students can predict how changing temperature will affect the speed of molecules.
  • Students can rank the speed of molecules in thermal equilibrium based on the relative masses of molecules.

Type: Virtual Manipulative

Under Pressure:

Explore pressure under and above water. See how pressure changes as one change fluids, gravity, container shapes, and volume.
With this simulation you can:

  • Investigate how pressure changes in air and water.
  • Discover how to change pressure.
  • Predict pressure in a variety of situations.

Type: Virtual Manipulative

Explore Buoyancy:

Explore when objects float and when will they sink. Learn how buoyancy works with blocks by modifying the properties of the blocks and the fluid.

Some of the sample learning goals can be:

  • Predict whether an object wills sink or float when place in a liquid, given densities of the object and liquid.
  • Apply the definition of density to both liquids and solids
  • Relate the buoyant force on an object to the weight of liquid it displaces
  • Predict the weight of a completely or partially submerged object of known mass and volume
  • Describe the forces that act on a completely or partially submerged object
  • Explain how an object that is more dense than water can be kept afloat by placing it on an object that is less dense than water.

Type: Virtual Manipulative

The Ramp:

The students must apply force to a given object and try to push it up the ramp. They will see the forces being applied to the object at all times.

Type: Virtual Manipulative

pH Scale:

Students can test the pH of several substances and visualize hydronium, hydroxide, and water molecules in solution by concentration or the number of molecules. Students can add water to a given substance to see the effects it will have on the pH of that substance; or they can create their own custom substance.

Type: Virtual Manipulative

How Fast do Objects Move in the Solar Sytem?:

This interactive demonstrates the impacts of the gravitational force of the sun on motion of objects in the solar system.

Type: Virtual Manipulative

States of Matter:

Watch different types of molecules form a solid, liquid, or gas. Add or remove heat and watch the phase change. Change the temperature or volume of a container and see a pressure-temperature diagram respond in real time.

Type: Virtual Manipulative

Web Mapping Portal:

A web mapping portal with real-time observations. This National Oceanic and Atmospheric Administration site allows teachers and students to use tools to generate maps, establish relationships between maps and databases, and learn the utility of Geographic Information Systems (GIS).

Type: Virtual Manipulative

Potential/Kinetic Energy Simulation:

Learn about conservation of energy with a skater! Build tracks, ramps and jumps for the skater and view the kinetic energy, potential energy, thermal energy as he moves. You can adjust the amount of friction and mass. Measurement and graphing tools are built in.

Type: Virtual Manipulative

PhET Gas Properties:

This virtual manipulative allows you to investigate various aspects of gases through virtual experimentation. From the site: Pump gas molecules to a box and see what happens as you change the volume, add or remove heat, change gravity, and more (open the box, change the molecular weight of the molecule). Measure the temperature and pressure, and discover how the properties of the gas vary in relation to each other.

Type: Virtual Manipulative

The Disaster Area: FEMA for Kids:

Through this website, students learn about different weather disasters and what to do before, during, and after an emergency.

Type: Virtual Manipulative

Membrane Channel Simulations:

This interactive cell membrane simulation allows students to see how different types of channels allow particles to move through the membrane.

Sample learning goals:

  • Predict when particles will move through the membrane and when they will not.
  • Identify which particle type will diffuse depending on which type of channels are present.
  • Predict the rate of diffusion based on the number and type of channels present.

Type: Virtual Manipulative

Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this course.