Three-Dimensional Studio Art 3 Honors   (#0101350)

Version for Academic Year:

Course Standards

General Course Information and Notes

Version Description

Students communicate a sense of 4-D, motion, and/or time, based on creative use of spatial relationships and innovative treatment of space and its components. Instruction may include, but is not limited to, content in green or industrial design, sculpture, ceramics, or building arts. Students address 4-D, the inter-relatedness of art and context, and may also include installation or collaborative works, virtual realities, light as a medium (i.e., natural, artificial, or reflective), or flexible, entered, or activated space. Other concepts for exploration include tension, compression or expansion, intrusions or extrusions, grouping, proximity, containment, closure, contradiction, and continuity. 3-D artists experiment with processes, techniques, and media, which may include, but are not limited to, creating maquettes, casting and kiln-firing techniques, stone carving, mold making, or working with glass, cement, PVC piping, or structures scaled to human existence. Craftsmanship and quality are reflected in the surface and structural qualities of the completed art forms. Students in the 3-D art studio focus on use of safety procedures for process, media, and techniques. Student artists use an art criticism process to evaluate, explain, and measure artistic growth in personal or group works. This course incorporates hands-on activities and consumption of art materials.

General Notes

Honors and Advanced Level Course Note: Advanced courses require a greater demand on students through increased academic rigor.  Academic rigor is obtained through the application, analysis, evaluation, and creation of complex ideas that are often abstract and multi-faceted.  Students are challenged to think and collaborate critically on the content they are learning. Honors level rigor will be achieved by increasing text complexity through text selection, focus on high-level qualitative measures, and complexity of task. Instruction will be structured to give students a deeper understanding of conceptual themes and organization within and across disciplines. Academic rigor is more than simply assigning to students a greater quantity of work.

English Language Development ELD Standards Special Notes Section:
Teachers are required to provide listening, speaking, reading and writing instruction that allows English language learners (ELL) to communicate for social and instructional purposes within the school setting. For the given level of English language proficiency and with visual, graphic, or interactive support, students will interact with grade level words, expressions, sentences and discourse to process or produce language necessary for academic success. The ELD standard should specify a relevant content area concept or topic of study chosen by curriculum developers and teachers which maximizes an ELL’s need for communication and social skills. To access an ELL supporting document which delineates performance definitions and descriptors, please click on the following link: https://cpalmsmediaprod.blob.core.windows.net/uploads/docs/standards/eld/si.pdf

General Information

Course Number: 0101350
Abbreviated Title: 3-D STUDIO ART 3 HON
Number of Credits: One (1) credit
Course Length: Year (Y)
Course Attributes:
  • Honors
Course Type: Core Academic Course
Course Level: 3
Course Status: Course Approved
Grade Level(s): 9,10,11,12
Graduation Requirement: Performing/Fine Arts

Educator Certifications

One of these educator certification options is required to teach this course.

Student Resources

Vetted resources students can use to learn the concepts and skills in this course.

Original Student Tutorials

Angle UP: Player 1:

Explore the construction processes for constructing an angle bisector, copying an angle and constructing a line parallel to a given line through a point not on the line using a variety of tools in this interactive, retro video game-themed tutorial.

NOTE: This tutorial uses both the angle bisector construction and the construction to copy an angle as an extension opportunity to also construct a line parallel to a given line through a point not on the line. Students also learn to identify corresponding angles created when a transversal crosses parallel lines, and discover using Geogebra that these angles are congruent.

Type: Original Student Tutorial

Meet Me Half Way:

Plan a paddle board expedition by learning how to do basic geometric constructions including copying a segment, constructing a segment bisector, constructing a segment's perpendicular bisector and constructing perpendicular segments using a variety of tools in this interactive tutorial.

Type: Original Student Tutorial

A Square Peg in a Round Hole:

Learn how to construct an inscribed square in a circle and why certain constructions are used in this interactive tutorial.

Type: Original Student Tutorial

Designing with Hexagons:

Learn how to construct an inscribed regular hexagon and equilateral triangle in a circle in this interactive tutorial.

Type: Original Student Tutorial

Hallowed Words: Evaluating a Speaker's Effectiveness:

Learn how to evaluate a speaker's point of view, reasoning, and use of evidence. In this interactive tutorial, you'll examine Abraham Lincoln's "Gettysburg Address" and evaluate the effectiveness of his words by analyzing his use of reasoning and evidence. 

Type: Original Student Tutorial

The Blueprints of Construction:

Learn to construct the perpendicular bisector of a line segment using a straightedge and compass with this interactive tutorial.

Type: Original Student Tutorial

Educational Software / Tool

Transformations Using Technology:

This virtual manipulative can be used to demonstrate and explore the effect of translation, rotation, and/or reflection on a variety of plane figures. A series of transformations can be explored to result in a specified final image.

Type: Educational Software / Tool

Perspectives Video: Expert

Mathematically Exploring the Wakulla Caves:

The tide is high! How can we statistically prove there is a relationship between the tides on the Gulf Coast and in a fresh water spring 20 miles from each other?

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Presentation/Slideshow

The Pythagorean Theorem: Geometry’s Most Elegant Theorem:

This lesson teaches students about the history of the Pythagorean theorem, along with proofs and applications. It is geared toward high school Geometry students that have completed a year of Algebra and addresses the following national standards of the National Council of Teachers of Mathematics and the Mid-continent Research for Education and Learning: 1) Analyze characteristics and properties of two- and three-dimensional geometric shapes and develop mathematical arguments about geometric relationships; 2) Use visualization, spatial reasoning, and geometric modeling to solve problems; 3) Understand and apply basic and advanced properties of the concepts of geometry; and 4) Use the Pythagorean theorem and its converse and properties of special right triangles to solve mathematical and real-world problems. The video portion is about thirty minutes, and with breaks could be completed in 50 minutes. (You may consider completing over two classes, particularly if you want to allow more time for activities or do some of the enrichment material). These activities could be done individually, in pairs, or groups. I think 2 or 3 students is optimal. The materials required for the activities include scissors, tape, string and markers.

Type: Presentation/Slideshow

Problem-Solving Tasks

Unit Squares and Triangles:

This problem solving task asks students to find the area of a triangle by using unit squares and line segments.

Type: Problem-Solving Task

Seven Circles II:

This task provides a concrete geometric setting in which to study rigid transformations of the plane.

Type: Problem-Solving Task

Inscribing a square in a circle:

This task provides an opportunity for students to apply triangle congruence theorems in an explicit, interesting context.

Type: Problem-Solving Task

Inscribing a hexagon in a circle:

This problem solving task challenges students to inscribe equilateral triangles and regular hexagons on a circle with a compass and straightedge.

Type: Problem-Solving Task

Construction of perpendicular bisector:

This problem solving task challenges students to construct a perpendicular bisector of a given segment.

Type: Problem-Solving Task

Reflected Triangles:

This task asks students to use a straightedge and compass to construct the line across which a triangle is reflected.

Type: Problem-Solving Task

Bisecting an angle:

This problem solving task challenges students to bisect a given angle.

Type: Problem-Solving Task

Locating Warehouse:

This problem solving task challenges students to place a warehouse (point) an equal distance from three roads (lines).

Type: Problem-Solving Task

Tangent Lines and the Radius of a Circle:

This problem solving task challenges students to find the perpendicular meeting point of a segment from the center of a circle and a tangent.

Type: Problem-Solving Task

Angle bisection and midpoints of line segments:

This task provides a construction of the angle bisector of an angle by reducing it to the bisection of an angle to finding the midpoint of a line segment. It is worth observing the symmetry -- for both finding midpoints and bisecting angles, the goal is to cut an object into two equal parts.

Type: Problem-Solving Task

Tutorials

Rotating polygons 180 degrees about their center:

Students will investigate symmetry by rotating polygons 180 degrees about their center.

Type: Tutorial

Line of reflection:

Students are shown, with an interactive tool, how to reflect a line segment. Students should have an understanding of slope and midpoint before viewing this video.

Type: Tutorial

Line of reflection:

This tutorial uses the midpoint of two lines to find the line of reflection.

Type: Tutorial

Points after rotation:

Students will see what happens when a figure is rotated about the origin -270 degrees. Having a foundation about right triangles is recommended before viewing this video.

Type: Tutorial

Specifying planes in three dimensions:

In this tutorial, students are introduced to the concept that three non-collinear points are necessary to define a unique plane.

Type: Tutorial

The language of geometry:

Before learning any new concept it's important students learn and use common language and label concepts consistently. This tutorial introduces students to th point, line and plane.

Type: Tutorial

Identifying parallel and perpendicular lines:

This tutorial is great practice for help in identifying parallel and perpendicular lines.

Type: Tutorial

Basic Geometry Language and Labels:

In this tutorial we will learn the basics of geometry, such as identifying a line, ray, point, and segment.

Type: Tutorial

Refraction of Light:

This resource explores the electromagnetic spectrum and waves by allowing the learner to observe the refraction of light as it passes from one medium to another, study the relation between refraction of light and the refractive index of the medium, select from a list of materials with different refractive indicecs, and change the light beam from white to monochromatic and observe the difference.

Type: Tutorial

Human Eye Accommodation:

  • Observe how the eye's muscles change the shape of the lens in accordance with the distance to the object being viewed
  • Indicate the parts of the eye that are responsible for vision
  • View how images are formed in the eye

Type: Tutorial

Concave Spherical Mirrors:

  • Learn how a concave spherical mirror generates an image
  • Observe how the size and position of the image changes with the object distance from the mirror
  • Learn the difference between a real image and a virtual image
  • Learn some applications of concave mirrors

Type: Tutorial

Convex Spherical Mirrors:

  • Learn how a convex mirror forms the image of an object
  • Understand why convex mirrors form small virtual images
  • Observe the change in size and position of the image with the change in object's distance from the mirror
  • Learn some practical applications of convex mirrors

Type: Tutorial

Color Temperature in a Virtual Radiator:

  • Observe the change of color of a black body radiator upon changes in temperature
  • Understand that at 0 Kelvin or Absolute Zero there is no molecular motion

Type: Tutorial

Solar Cell Operation:

This resource explains how a solar cell converts light energy into electrical energy. The user will also learn about the different components of the solar cell and observe the relationship between photon intensity and the amount of electrical energy produced.

Type: Tutorial

Electromagnetic Wave Propagation:

  • Observe that light is composed of oscillating electric and magnetic waves
  • Explore the propagation of an electromagnetic wave through its electric and magnetic field vectors
  • Observe the difference in propagation of light of different wavelengths

Type: Tutorial

Basic Electromagnetic Wave Properties:

  • Explore the relationship between wavelength, frequency, amplitude and energy of an electromagnetic wave
  • Compare the characteristics of waves of different wavelengths

Type: Tutorial

Geometrical Construction of Ray Diagrams:

  • Learn to trace the path of propagating light waves using geometrical optics
  • Observe the effect of changing parameters such as focal length, object dimensions and position on image properties
  • Learn the equations used in determining the size and locations of images formed by thin lenses

Type: Tutorial

Video/Audio/Animation

Parallel Lines:

This video illustrates how to determine if the graphs of a given set of equations are parallel.

Type: Video/Audio/Animation

Virtual Manipulatives

Inscribe a Regular Hexagon in a Circle:

This geogebratube interactive worksheet shows the step by step process for inscribing a regular hexagon in a circle. There are other geogebratube interactive worksheets for the square and the equilateral triangle.

Type: Virtual Manipulative

Combining Transformations:

In this manipulative activity, you can first get an idea of what each of the rigid transformations look like, and then get to experiment with combinations of transformations in order to map a pre-image to its image.

Type: Virtual Manipulative

Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this course.