Course Standards
General Course Information and Notes
General Notes
Access Courses: Access courses are intended only for students with a significant cognitive disability. Access courses are designed to provide students with access to the general curriculum. Access points reflect increasing levels of complexity and depth of knowledge aligned with grade-level expectations. The access points included in access courses are intentionally designed to foster high expectations for students with significant cognitive disabilities.
Access points in the subject areas of science, social studies, art, dance, physical education, theatre, and health provide tiered access to the general curriculum through three levels of access points (Participatory, Supported, and Independent). Access points in English language arts and mathematics do not contain these tiers, but contain Essential Understandings (or EUs). EUs consist of skills at varying levels of complexity and are a resource when planning for instruction.
English Language Development ELD Standards Special Notes Section:
Teachers are required to provide listening, speaking, reading and writing instruction that allows English language learners (ELL) to communicate information, ideas and concepts for academic success in the content area of Science. For the given level of English language proficiency and with visual, graphic, or interactive support, students will interact with grade level words, expressions, sentences and discourse to process or produce language necessary for academic success The ELD standard should specify a relevant content area concept or topic of study chosen by curriculum developers and teachers which maximizes an ELL’s need for communication and social skills. To access an ELL supporting document which delineates performance definitions and descriptors, please click on the following link: https://cpalmsmediaprod.blob.core.windows.net/uploads/docs/standards/eld/sc.pdf.
Version Requirements
Laboratory investigations that include the use of scientific inquiry, research, measurement, problem solving, laboratory apparatus and technologies, experimental procedures, and safety procedures are an integral part of this course. The National Science Teachers Association (NSTA) recommends that at the high school level, all students should be in the science lab or field, collecting data every week. School laboratory investigations (labs) are defined by the National Research Council (NRC) as an experience in the laboratory, classroom, or the field that provides students with opportunities to interact directly with natural phenomena or with data collected by others using tools, materials, data collection techniques, and models (NRC, 2006, p. 3). Laboratory investigations in the high school classroom should help all students develop a growing understanding of the complexity and ambiguity of empirical work, as well as the skills to calibrate and troubleshoot equipment used to make observations. Learners should understand measurement error; and have the skills to aggregate, interpret, and present the resulting data (National Research Council, 2006, p.77; NSTA, 2007).General Information
- Class Size Core Required
Educator Certifications
Student Resources
Original Student Tutorials
Learn to identify the properties of our dynamic and powerful Sun and explain how they create conditions and events on Earth with this interactive tutorial.
Type: Original Student Tutorial
Learn to identify different types of severe weather and the conditions that contribute to the formation of severe weather in this interactive tutorial.
Type: Original Student Tutorial
Learn about seismic waves and how they interact with and impact Earth's layers in this interactive tutorial.
This is part 2 of a two-part series. Click HERE to view part 1.
Type: Original Student Tutorial
Learn to identify Earth's internal layers and their physical and chemical characteristics with this interactive tutorial.
This is part 1 of 2-part series, click HERE to view part 2 [COMING SOON].
Type: Original Student Tutorial
Discover how Isaac Newton's background, talents, interests, and goals influenced his groundbreaking work in this interactive tutorial.
This is part 4 in a 4-part series. Click below to explore the other tutorials in the series.
- Part 1: Discovering Newton's First Law of Motion: On the Soccer Pitch
- Part 2: Discovering Newton’s Second Law of Motion: On the Softball Diamond
- Part 3: Discovering Newton’s Third Law of Motion: On the Basketball Court
Type: Original Student Tutorial
Explore the connections and interactions between spheres, including the lithosphere, atmosphere, biosphere, hydrosphere, and cryosphere, on our ever-changing Earth in this interactive tutorial.
Type: Original Student Tutorial
Learn how scientists measure viral spread and use this information to make recommendations for the public in this interactive tutorial.
Type: Original Student Tutorial
Learn how to identify different sources of scientific claims and to evaluate their reliability in this interactive tutorial.
Type: Original Student Tutorial
This is Part Two of a two-part series. Learn to identify faulty reasoning in this interactive tutorial series. You'll learn what some experts say about year-round schools, what research has been conducted about their effectiveness, and how arguments can be made for and against year-round education. Then, you'll read a speech in favor of year-round schools and identify faulty reasoning within the argument, specifically the use of hasty generalizations.
Make sure to complete Part One before Part Two! Click HERE to launch Part One.
Type: Original Student Tutorial
Learn to identify faulty reasoning in this two-part interactive English Language Arts tutorial. You'll learn what some experts say about year-round schools, what research has been conducted about their effectiveness, and how arguments can be made for and against year-round education. Then, you'll read a speech in favor of year-round schools and identify faulty reasoning within the argument, specifically the use of hasty generalizations.
Make sure to complete both parts of this series! Click HERE to open Part Two.
Type: Original Student Tutorial
Examine President John F. Kennedy's inaugural address in this interactive tutorial. You will examine Kennedy's argument, main claim, smaller claims, reasons, and evidence.
In Part Four, you'll use what you've learned throughout this series to evaluate Kennedy's overall argument.
Make sure to complete the previous parts of this series before beginning Part 4.
Type: Original Student Tutorial
Examine President John F. Kennedy's inaugural address in this interactive tutorial. You will examine Kennedy's argument, main claim, smaller claims, reasons, and evidence. By the end of this four-part series, you should be able to evaluate his overall argument.
In Part Three, you will read more of Kennedy's speech and identify a smaller claim in this section of his speech. You will also evaluate this smaller claim's relevancy to the main claim and evaluate Kennedy's reasons and evidence.
Make sure to complete all four parts of this series!
Type: Original Student Tutorial
Explore how heat changes the temperature or the state of matter of a material in this interactive tutorial.
Type: Original Student Tutorial
Explore the three types of heat transfer that occur in our world as you complete this interactive tutorial.
Type: Original Student Tutorial
This is Part Two of a two-part tutorial series. In this interactive tutorial, you'll practice identifying a speaker's purpose using a speech by aviation pioneer Amelia Earhart. You will examine her use of rhetorical appeals, including ethos, logos, pathos, and kairos. Finally, you'll evaluate the effectiveness of Earhart's use of rhetorical appeals.
Be sure to complete Part One first. Click here to launch PART ONE.
Type: Original Student Tutorial
This is Part One of a two-part tutorial series. In this interactive tutorial, you'll practice identifying a speaker's purpose using a speech by aviation pioneer Amelia Earhart. You will examine her use of rhetorical appeals, including ethos, logos, pathos, and kairos. Finally, you'll evaluate the effectiveness of Earhart's use of rhetorical appeals.
Click here to launch PART TWO.
Type: Original Student Tutorial
Practice writing different aspects of an expository essay about scientists using drones to research glaciers in Peru. This interactive tutorial is part four of a four-part series. In this final tutorial, you will learn about the elements of a body paragraph. You will also create a body paragraph with supporting evidence. Finally, you will learn about the elements of a conclusion and practice creating a “gift.”
This tutorial is part four of a four-part series. Click below to open the other tutorials in this series.
- Drones and Glaciers: Eyes in the Sky (Part 1)
- Drones and Glaciers: Eyes in the Sky (Part 2)
- Expository Writing: Eyes in the Sky (Part 3)
- Expository Writing: Eyes in the Sky (Part 4)
Type: Original Student Tutorial
Learn how to write an introduction for an expository essay in this interactive tutorial. This tutorial is the third part of a four-part series. In previous tutorials in this series, students analyzed an informational text and video about scientists using drones to explore glaciers in Peru. Students also determined the central idea and important details of the text and wrote an effective summary. In part three, you'll learn how to write an introduction for an expository essay about the scientists' research.
This tutorial is part three of a four-part series. Click below to open the other tutorials in this series.
- Drones and Glaciers: Eyes in the Sky (Part 1)
- Drones and Glaciers: Eyes in the Sky (Part 2)
- Expository Writing: Eyes in the Sky (Part 3)
- Expository Writing: Eyes in the Sky (Part 4)
Type: Original Student Tutorial
Learn how to identify the central idea and important details of a text, as well as how to write an effective summary in this interactive tutorial. This tutorial is the second tutorial in a four-part series that examines how scientists are using drones to explore glaciers in Peru.
This tutorial is part two of a four-part series. Click below to open the other tutorials in this series.
- Drones and Glaciers: Eyes in the Sky (Part 1)
- Drones and Glaciers: Eyes in the Sky (Part 2)
- Expository Writing: Eyes in the Sky (Part 3)
- Expository Writing: Eyes in the Sky (Part 4)
Type: Original Student Tutorial
Learn about how researchers are using drones, also called unmanned aerial vehicles or UAVs, to study glaciers in Peru. In this interactive tutorial, you will practice citing text evidence when answering questions about a text.
This tutorial is part one of a four-part series. Click below to open the other tutorials in this series.
- Drones and Glaciers: Eyes in the Sky (Part 1)
- Drones and Glaciers: Eyes in the Sky (Part 2)
- Expository Writing: Eyes in the Sky (Part 3)
- Expository Writing: Eyes in the Sky (Part 4)
Type: Original Student Tutorial
See how data are interpreted to better understand the reproductive strategies taken by sea anemones with this interactive tutorial.
Type: Original Student Tutorial
Examine field sampling strategies used to gather data and avoid bias in ecology research. This interactive tutorial features the CPALMS Perspectives video .
Type: Original Student Tutorial
Explore the mystery of muscle cell metabolism and how cells are able to meet the need for a constant supply of energy. In this interactive tutorial, you'll identify the basic structure of adenosine triphosphate (ATP), explain how ATP’s structure is related it its job in the cell, and connect this role to energy transfers in living things.
Type: Original Student Tutorial
Learn how to better conduct research in this interactive tutorial. You'll learn to distinguish relevant from irrelevant sources when conducting research on a specific topic. In addition, you'll practice identifying authoritative sources and selecting the appropriate keywords to find quality sources for your topic.
Type: Original Student Tutorial
Compare and contrast mitosis and meiosis in this interactive tutorial. You'll also relate them to the processes of sexual and asexual reproduction and their consequences for genetic variation.
Type: Original Student Tutorial
Learn how to identify explicit evidence and understand implicit meaning in a text.
You should be able to explain how different types of scientific evidence support the theory of evolution, including direct observation, fossils, DNA, biogeography, and comparative anatomy and embryology.
Type: Original Student Tutorial
Learn how to trace matter and energy through living and non-living systems and understand that matter and energy are transferred on a global scale.
Type: Original Student Tutorial
Learn how to identify and describe the leading scientific explanations of the origin of life on Earth.
Type: Original Student Tutorial
Explore how environmental changes at different time scales affect living organisms within ecosystems in this interactive tutorial.
Type: Original Student Tutorial
Learn how to identify explicit evidence and understand implicit meaning in a text and demonstrate how and why scientific inferences are drawn from scientific observation and be able to identify examples in biology.
Type: Original Student Tutorial
Learn that a scientific theory is the culmination of many experiments and supplies the most powerful explanation that scientists have to offer with this interactive tutorial.
Type: Original Student Tutorial
Explore the relationship between mutations, the cell cycle, and uncontrolled cell growth which may result in cancer with this interactive tutorial.
Type: Original Student Tutorial
Learn to distinguish between questions that can be answered by science and questions that science cannot answer. This interactive tutorial will help you distinguish between science and other ways of knowing, including art, religion, and philosophy.
Type: Original Student Tutorial
Learn how the distribution of aquatic life forms is affected by light, temperature, and salinity with this interactive tutorial.
Type: Original Student Tutorial
Learn to differentiate and describe how geologic features affect the climate patterns of a region in this interactive tutorial.
Type: Original Student Tutorial
Educational Game
This interesting game is to hit the target located opposite a electron gun. The electron gun will fire an electron. This electron must not hit any walls or obstacles during the attempt. The user may direct the electron along a path by placing stationary positive and negative charges at various locations. This game will help support learning about the concept of the electric field, which is created when electrons repel other electrons.
Type: Educational Game
Lesson Plans
The purpose of this lesson is to introduce students to the concept of sea level rise as it occurs through climate change by having them examine 3 specific parameters: ice distribution, thermal expansion, and analyzing and interpreting data. The lesson and activities within the lesson were designed using the three dimensions of the Framework for K-12 Science Education and the Next Generation Science Standards – specifically crosscutting concepts, science and engineering practices, and disciplinary core ideas. While there isn’t any required pre-requisite learning required for this lesson, a general understanding of sea-level rise, glaciers, and climate may be beneficial to students. During classroom breaks, pairs of students will develop/discuss their models, revise their interpretations of their models or data, and think-pair-share their thoughts on the investigation segments.
Type: Lesson Plan
This BLOSSOMS lesson discusses Carbon Dioxide, and its impact on climate change. The main learning objective is for students to become more familiar with human production of Carbon Dioxide gas, as well as to gain an awareness of the potential for this gas to effect the temperature of Earth’s atmosphere. This lesson should take about an hour to complete. In order to complete the lesson, the teacher will need: printed copies of signs representing the different products and processes that take place in the carbon cycle (included), samples of matter that represent those products, handouts for the students to create a graphic of the carbon cycle (included) and graph paper or graphing software for students to create graphs. In the breaks of this BLOSSOMS lesson, students will be creating models of the carbon cycle as well as observing experiments and analyzing data from them. It is hoped that this lesson will familiarize students with ways in which carbon moves through our environment and provide them with some personal connection to the impact that an increased concentration of CO2 can have on air temperature. The goal is to spark their interest and hopefully to encourage them to ask and investigate more questions about the climate.
Type: Lesson Plan
In this lesson students will see the different types of evidence scientists use to understand evolutionary relationships among organisms. They will first practice by using shared physical characteristics to predict relationships among members of the cat family and then use this approach to predict primate relationships. They will compare their predictions to evidence provided by analyzing amino acid sequences and build a phylogenetic tree based on these sequences. Finally, they will look at the tree in the context of time in order to see divergence times.
Type: Lesson Plan
The goal of this lesson is to explain how sailboats work by exploring basic physics principles. At the end of this lesson, students will be able to identify the forces acting on a sailboat and explain how the combination of these forces results in the forward motion of a sailboat. Students should be familiar with vectors and be able to use them to represent forces and moments, and also should be familiar with using free body diagrams to represent forces and moments. The classroom activity challenges are centered around small-group discussions based on the questions posed before each break. Free body diagrams, or another conceptual representation of his or her answer, should support each student’s solution to the questions posed in the video.
Type: Lesson Plan
Perspectives Video: Experts
<p>Jump to it and learn more about how quadratic equations are used in robot navigation problem solving!</p>
Type: Perspectives Video: Expert
In a fog about weather patterns? This climatologist will demystify the topic for you.
Type: Perspectives Video: Expert
Dr. Oates uses engineering practices to design artificial muscles that react to electrostatic fields.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Expert
A climatologist rains down information about how physical factors form regional climates.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Expert
Plants need visible light, just not all of it. Learn how space plants and their lights strive for efficiency.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Expert
Humans aren't the only ones who get their fingerprints taken. Learn how this scientist is like a crime scene investigator using oil "fingerprints" to explain the orgins of spilled oil.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Expert
Dissolved oxygen is important to all life in and out of the water! Learn more in this video!
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Expert
Perspectives Video: Professional/Enthusiasts
<p>Get fired up as you learn more about ceramic glaze recipes and mathematical units.</p>
Type: Perspectives Video: Professional/Enthusiast
Learn how the shape of a didgeridoo affects its sound in this totally tubular video.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
<p>Math is important to help you get where you want to go in life, especially if you plan to fly there!</p>
Type: Perspectives Video: Professional/Enthusiast
If you want to understand the atom, you'll need a lot of energy. Learn how physicists use high energy light and electrons to study atomic structure.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
Want to watch a video on audio engineering and frequency? Sounds good to me.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
An archaeologist explains how he is using x-rays to reconstruct a nineteenth-century battle!
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
Dive deep into science as an oceanographer describes conduction, convection, and radiation and their relationship to oceanic systems.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
<p>Forge a new understanding of metallurgy and heat transfer by learning how this blacksmith and collier make nails.</p>
Type: Perspectives Video: Professional/Enthusiast
It's okay if you're not on quite the same wavelength as this ethnomusicologist. In Balinese gamelan tuning, that's a good thing!
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
Archaeologists can see underground trends before everyone else with ground penetrating radar (GPR).
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
If physics has you down, don't fret - this musician covers all the bases.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
Physical science and social science connect in this discussion of Balinese gamelan. Full STEAM ahead!
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
<p>Hydrogen is used to launch spacecraft, but accidental fires are difficult to see. Learn about the physics of these fires and how we detect them.</p>
Type: Perspectives Video: Professional/Enthusiast
Immerse yourself in deep-sea geology to learn more about naturally-occurring oil seeps.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
Problem-Solving Tasks
The principal purpose of the task is to explore a real-world application problem with algebra, working with units and maintaining reasonable levels of accuracy throughout. Students are asked to determine which product will be the most economical to meet the requirements given in the problem.
Type: Problem-Solving Task
The purpose of this task is to illustrate through an absurd example the fact that in real life quantities are reported to a certain level of accuracy, and it does not make sense to treat them as having greater accuracy.
Type: Problem-Solving Task
This task operates at two levels. In part it is a simple exploration of the relationship between speed, distance, and time. Part (c) requires understanding of the idea of average speed, and gives an opportunity to address the common confusion between average speed and the average of the speeds for the two segments of the trip.
At a higher level, the task addresses MAFS.912.N-Q.1.3, since realistically neither the car nor the bus is going to travel at exactly the same speed from beginning to end of each segment; there is time traveling through traffic in cities, and even on the autobahn the speed is not constant. Thus students must make judgments about the level of accuracy with which to report the result.
Type: Problem-Solving Task
This task examines, from a mathematical and statistical point of view, how scientists measure the age of organic materials by measuring the ratio of Carbon 14 to Carbon 12. The focus here is on the statistical nature of such dating.
Type: Problem-Solving Task
This task examines, from a mathematical and statistical point of view, how scientists measure the age of organic materials by measuring the ratio of Carbon 14 to Carbon 12. The focus here is on the statistical nature of such dating.
Type: Problem-Solving Task
The problem requires students to not only convert miles to kilometers and gallons to liters but they also have to deal with the added complication of finding the reciprocal at some point.
Type: Problem-Solving Task
This task asks students to calculate the cost of materials to make a penny, utilizing rates of grams of copper.
Type: Problem-Solving Task
Students are asked to use units to determine if the given statement is valid.
Type: Problem-Solving Task
This is a challenging task, suitable for extended work, and reaching into a deep understanding of units. Students are given a scenario and asked to determine the number of people required to complete the amount of work in the time described. The task requires students to exhibit , Make sense of problems and persevere in solving them. An algebraic solution is possible but complicated; a numerical solution is both simpler and more sophisticated, requiring skilled use of units and quantitative reasoning. Thus the task aligns with either MAFS.912.A-CED.1.1 or MAFS.912.N-Q.1.1, depending on the approach.
Type: Problem-Solving Task
This resource poses the question, "how many vehicles might be involved in a traffic jam 12 miles long?"
This task, while involving relatively simple arithmetic, promps students to practice modeling (MP4), work with units and conversion (N-Q.1), and develop a new unit (N-Q.2). Students will also consider the appropriate level of accuracy to use in their conclusions (N-Q.3).
Type: Problem-Solving Task
The task is a modeling problem which ties in to financial decisions faced routinely by businesses, namely the balance between maintaining inventory and raising short-term capital for investment or re-investment in developing the business.
Type: Problem-Solving Task
This task provides students the opportunity to make use of units to find the gas needed (). It also requires them to make some sensible approximations (e.g., 2.92 gallons is not a good answer to part (a)) and to recognize that Felicia's situation requires her to round up. Various answers to (a) are possible, depending on how much students think is a safe amount for Felicia to have left in the tank when she arrives at the gas station. The key point is for them to explain their choices. This task provides an opportunity for students to practice MAFS.K12.MP.2.1: Reason abstractly and quantitatively, and MAFS.K12.MP.3.1: Construct viable arguments and critique the reasoning of others.
Type: Problem-Solving Task
This problem involves the meaning of numbers found on labels. When the level of accuracy is not given we need to make assumptions based on how the information is reported. An unexpected surprise awaits in this case, however, as no reasonable interpretation of the level of accuracy makes sense of the information reported on the bottles in parts (b) and (c). Either a miscalculation has been made or the numbers have been rounded in a very odd way.
Type: Problem-Solving Task
Text Resources
NASA's "Beginner's Guide to Aerodynamics" provides some general information on the basics of aerodynamics. The site allows users to explore at their own pace and level of interest. The topics available include equations of motion, free falling, air resistance, force, gas properties, and atmosphere. Movies, reading materials, and activities are all available to accommodate a variety of different learning styles.
Type: Text Resource
This site presents the basic ideas of magnetism and applies these ideas to the earth's magnetic field. There are several useful diagrams and pictures interspersed throughout this lesson, as well as links to more detailed subjects. This is an introduction to a larger collection on exploring the Earth's magnetosphere. A Spanish translation is available.
Type: Text Resource
Tutorials
Would a brick or feather fall faster? What would fall faster on the moon?
Type: Tutorial
This video discusses how to figure out the horizontal displacement for a projectile launched at an angle.
Type: Tutorial
This resource is a basic introduction to the types of severe weather. Students will learn about the formation of tornadoes, lightning, floods, and hurricanes. Images of each weather system also accompany each section.
Type: Tutorial
This tutorial is about projectile motion. This powerpoint lecture discusses the independence of the vertical and horizontal motion of projectiles. Students will be asked to solve problems involving projectile motion of both projectiles fired horizontally and at an angle. This tutorial is geared for advanced students.
Type: Tutorial
Every day, we are bombarded by attention grabbing headlines that promise miracle cures to all of our ailments -- often backed up by a "scientific study." But what are these studies, and how do we know if they are reliable? David H. Schwartz dissects two types of studies that scientists use, illuminating why you should always approach the claims with a critical eye.
Type: Tutorial
What exactly is the carbon cycle? Nathaniel Manning provides a basic look into the cyclical relationship of carbon, humans and the environment.
Type: Tutorial
This lab simulation will allow you to explore how carbon circulates through the environment. Through data collection and analysis, you will experiment with the impact that humans are having on the cycling of carbon and make data based predictions on how these impacts may change environmental outcomes to the year 2100.
Type: Tutorial
This tutorial provides the learners with detailed information about forces. Topics covered include Newton's Laws, friction, gravity, balanced and unbalanced forces, vectors, weight, motion and momentum.
Type: Tutorial
This tutorial for student audiences covers information about erosion and deposition including the factors related to these conditions. The tutorial also briefly covers the Geologic cycle.
Type: Tutorial
This tutorial contains information about the characteristics of longitudinal, transverse, and surface waves. This tutorial will also provide information about the amplitude, frequency, wavelength, speed, refraction, reflection, diffraction, and constructive and destructive interference of the waves.
Type: Tutorial
This resource explores the electromagnetic spectrum and waves by allowing the learner to observe the refraction of light as it passes from one medium to another, study the relation between refraction of light and the refractive index of the medium, select from a list of materials with different refractive indicecs, and change the light beam from white to monochromatic and observe the difference.
Type: Tutorial
- Observe the change of color of a black body radiator upon changes in temperature
- Understand that at 0 Kelvin or Absolute Zero there is no molecular motion
Type: Tutorial
- Observe that light is composed of oscillating electric and magnetic waves
- Explore the propagation of an electromagnetic wave through its electric and magnetic field vectors
- Observe the difference in propagation of light of different wavelengths
Type: Tutorial
- Explore the relationship between wavelength, frequency, amplitude and energy of an electromagnetic wave
- Compare the characteristics of waves of different wavelengths
Type: Tutorial
Video/Audio/Animations
With an often unexpected outcome from a simple experiment, students can discover the factors that cause and influence thermohaline circulation in our oceans. In two 45-minute class periods, students complete activities where they observe the melting of ice cubes in saltwater and freshwater, using basic materials: clear plastic cups, ice cubes, water, salt, food coloring, and thermometers. There are no prerequisites for this lesson but it is helpful if students are familiar with the concepts of density and buoyancy as well as the salinity of seawater. It is also helpful if students understand that dissolving salt in water will lower the freezing point of water. There are additional follow up investigations that help students appreciate and understand the importance of the ocean's influence on Earth's climate.
Type: Video/Audio/Animation
In this video, research is presented describing scientific studies of marine fossils found in Arctic regions.
Type: Video/Audio/Animation
This short informational text, diagrams, a video, and guided questions from the CK-12 Foundation discusses plate motions and the role of convection.
Type: Video/Audio/Animation
Ocean explorer Robert Ballard gives a TED Talk relating to the mysteries of the ocean, and the importance of its continued exploration.
Type: Video/Audio/Animation
This video provides a historical background about the definition of a planet and how different objects discovered in space were classified as planets or fir into a different category
Type: Video/Audio/Animation
A collection of crossword puzzles that test the knowledge of students about some of the terms, processes, and classifications covered in science topics
Type: Video/Audio/Animation
This video contains a demo that can be performed to show that light consists of particles
It also uses Lasers with different wavelengths
Type: Video/Audio/Animation
- Explain the processes of absorption and emission
- Describe how a laser works
- Determine the factors affecting lasing
Type: Video/Audio/Animation
'Towers in the Tempest' is a 4.5 minute narrated animation that explains recent scientific insights into how hurricanes intensify. This intensification can be caused by a phenomenon called a 'hot tower'. For the first time, research meteorologists have run complex simulations using a very fine temporal resolution of 3 minutes. Combining this simulation data with satellite observations enables detailed study of 'hot towers'. The science of 'hot towers' is described using: observed hurricane data from a satellite, descriptive illustrations, and volumetric visualizations of simulation data.
Type: Video/Audio/Animation
This video from NASA presents the 2005 hurricane season with actual data that NASA and NOAA satellites measured. Sea surface temperatures, clouds, storm tracks, and hurricane category labels are shown as the hurricane season progresses.
Type: Video/Audio/Animation
This site describes how hurricanes (tropical cyclones) form. The site includes text, diagrams, and satellite images in a movie.
Type: Video/Audio/Animation
The Sun produces a solar wind — a continuous flow of charged particles — that can affect us on Earth. It can, for example, disrupt communications, navigation systems, and satellites. Solar activity can also cause power outages, such as the extensive Canadian blackout in 1989. In this video segment adapted from NASA, learn about solar storms and their effects on Earth.
Type: Video/Audio/Animation
This video examines the vocabulary essential for understanding the nature of science and evolution and illustrates how evolution is a powerful, well-supported scientific explanation for the relatedness of all life. A clear definition and description of scientific theory is given.
Type: Video/Audio/Animation
In this National Science Foundation video and reading selection lab ecologist Janis Dickinson explains how she depends on citizen scientists to help her track the effects of disease, land-use change and environmental contaminants on the nesting success of birds.
Type: Video/Audio/Animation
This simulation shows the spread of a favorable mutation through a population of pocket mice. Even a small selective advantage can lead to a rapid evolution of the population.
Type: Video/Audio/Animation
Virtual Manipulatives
In this simulation, learn about the black body spectrum of the sun, a light bulb, an oven and the earth. Adjust the temperature to see how the wavelength and intensity of the spectrum are affected.
Type: Virtual Manipulative
Learn more about collisions with the use of a virtual air hockey table. Investigate simple and complex collisions in one and two dimensions.Experiment with the number of discs, masses and initial conditions. Vary the elasticity and see how the total momentum and kinetic energy changes during collisions.
Some of the sample learning goals can be:
- Draw "Before and After" pictures of collisions.
- Construct momentum vector representations of "Before and After" collisions.
- Apply law of conservation of momentum to solve problems with collisions.
- Explain why energy is not conserved and varies in some collisions.
- Determine the change in mechanical energy in collisions of varying "elasticity".
- What does "elasticity" mean?
Type: Virtual Manipulative
The split brain experiments revealed that the right and the left hemisphere in the brain are good at different things. For instance, the right hemisphere is good at space perception tasks and music while the left is good at verbal and analytic tasks. This game guides students through some examples of the split-brain phenomenon and how the differences are understood.
Type: Virtual Manipulative
This virtual manipulative will allow the user to see how a magnetic field will effect the motion of a charged particle. The charge of the particle and the size of the magnetic field can be changed.
Type: Virtual Manipulative
This virtual manipulative will help the students to understand how the light shines on a metal surface. Students will recognize a process called as photoelectric effect wherein light can be used to push electrons from the surface of a solid.
Some of the sample learning goals can be:
- Visualize and describe the photoelectric effect experiment.
- Predict the results of the experiment, when the intensity of light is changed and its effects on the current and energy of the electrons.
- Predict the results of the experiment, when the wavelength of the light is changed and its effects on the current and the energy of the electrons.
- Predict the results of the experiment, when the voltage of the light is changed and its effects on the current and energy of electrons.
Type: Virtual Manipulative
This virtual manipulative will the students learn about position, velocity and acceleration. Acceleration is the derivative of velocity with respect to time and the velocity is the derivative of position with respect to time. With the elimination of time, the relationship between the acceleration, velocity and position can be represented as x = v2 / 2a. In the stimulation, students will be able to move the man back and forth with the mouse and plot his motion.
Some of the sample learning goals can be:
- Interpret, predict and draw charts (position, velocity, and acceleration) for common situations.
- Provide reasoning used to make sense of the charts.
Type: Virtual Manipulative
This virtual manipulative will help the students generate electricity with a bar magnet. Students can discover the physics behind the phenomena by exploring magnets and how they can be used to make a bulb light. They will recognize that any change in the magnetic environment of a coil of wire will cause a voltage to be induced in the coil.
Some of the sample learning goals can be:
- Identify equipment and conditions that produce induction.
- Compare and contrast how both a light bulb and voltmeter can be used to show characteristics of the induced current.
- Predict how the current will change when the conditions are varied.
- Explain practical applications of Faraday's Law.
- Explain what is the cause of the induction.
Type: Virtual Manipulative
This is a virtual manipulative to understand beta decay. In the Beta decay process, a neutron decays into a proton and an electron (beta radiation). The process also requires the emission of a neutrino to maintain momentum and energy balance. Beta decay allows the atom to obtain the optimal ratio of protons and neutrons.
Type: Virtual Manipulative
This virtual manipulative will help you to understand the process of alpha decay. Watch alpha particles escape from a polonium nucleus, causing radioactive alpha decay. See how random decay times relate to the half life.
Type: Virtual Manipulative
This virtual manipulative will allow you to visualize the gravitational force that two objects exert on each other. By changing the properties of the objects, you can see how the gravitational force changes.
Some areas to explore:
- Relate gravitational force to masses of objects and distance between objects.
- Explain Newton's third law for gravitational forces.
- Design experiments that allow you to derive an equation that related mass, distance, and gravitational force.
- Use measurements to determine the universal gravitational constant.
Type: Virtual Manipulative
Whether it is a tumor or not, Magnetic Resonance Imaging (MRI) can tell. Your head is full of tiny radio transmitters (the nuclear spins of the hydrogen nuclei of your water molecules). In an MRI unit, these little radios can be made to broadcast their positions, giving a detailed picture of the inside of your head.
In this simulation you can:
- Recognize that light can flip spins if the energy of the photons matches the difference between the energies of spin up and spin down.
- Recognize that the difference between the energies of spin up and spin down is proportional to the strength of the applied magnetic field.
- Describe how to put these two ideas together to detect where there is a higher density of spins.
Type: Virtual Manipulative
This activity will help to investigate how a greenhouse gas affects the climate, or why the ozone layer is important. Using this simulation, explore how light interacts with molecules in our atmosphere.
Areas to explore:
- How light interacts with molecules in our atmosphere.
- Identify that absorption of light depends on the molecule and the type of light.
- Relate the energy of the light to the resulting motion.
- Identify that energy increases from microwave to ultraviolet.
- Predict the motion of a molecule based on the type of light it absorbs.
- Identify how the structure of a molecule affects how it interacts with light.
Type: Virtual Manipulative
- Explain what happens when the magnet moves through the coil at different speeds and how this affects the brightness of the bulb and the magnitude and sign of the voltage.
- Explain the difference between moving the magnet through the coil from the right side versus the left side.
- Explain the difference between moving magnet through the big coil versus the smaller coil.
Type: Virtual Manipulative
The students will drag a red point across the screen in any direction they please and, in the process, will be able to see the forces that are being put on that point at any given moment.
Type: Virtual Manipulative
The students will try to move a red ball into a blue goal without touching the walls. They will have fun competing amongst themselves to get the best time but at the same time they will also be learning about vectors, velocity, and acceleration.
Type: Virtual Manipulative
This simulation demonstrates the physics of projectile motion. The user can fire different objects through a cannon, set its speed, angle and mass and observe the resultant motion.
Type: Virtual Manipulative
Complete this virtual manipulative to gain a better understanding of nuclear fission. Study the basic principles behind chain reactions and a nuclear reactor.
Type: Virtual Manipulative
The students will watch as gases become trapped by the Earth's surface. They can examine different variables and the relationship between concentration of greenhouse gases, such as carbon dioxide and methane, and temperature.
Type: Virtual Manipulative
A web mapping portal with real-time observations. This National Oceanic and Atmospheric Administration site allows teachers and students to use tools to generate maps, establish relationships between maps and databases, and learn the utility of Geographic Information Systems (GIS).
Type: Virtual Manipulative