M/J Comprehensive Science 1, Advanced (#2002050) 


This document was generated on CPALMS - www.cpalms.org
You are not viewing the current course, please click the current year’s tab.

Course Standards

Name Description
SC.6.E.6.1: Describe and give examples of ways in which Earth's surface is built up and torn down by physical and chemical weathering, erosion, and deposition.
SC.6.E.6.2: Recognize that there are a variety of different landforms on Earth's surface such as coastlines, dunes, rivers, mountains, glaciers, deltas, and lakes and relate these landforms as they apply to Florida.
SC.6.E.7.1: Differentiate among radiation, conduction, and convection, the three mechanisms by which heat is transferred through Earth's system.
SC.6.E.7.2: Investigate and apply how the cycling of water between the atmosphere and hydrosphere has an effect on weather patterns and climate.
SC.6.E.7.3: Describe how global patterns such as the jet stream and ocean currents influence local weather in measurable terms such as temperature, air pressure, wind direction and speed, and humidity and precipitation.
SC.6.E.7.4: Differentiate and show interactions among the geosphere, hydrosphere, cryosphere, atmosphere, and biosphere.
SC.6.E.7.5: Explain how energy provided by the sun influences global patterns of atmospheric movement and the temperature differences between air, water, and land.
SC.6.E.7.6: Differentiate between weather and climate.
SC.6.E.7.7: Investigate how natural disasters have affected human life in Florida.
SC.6.E.7.8: Describe ways human beings protect themselves from hazardous weather and sun exposure.
SC.6.E.7.9: Describe how the composition and structure of the atmosphere protects life and insulates the planet.
SC.6.L.14.1: Describe and identify patterns in the hierarchical organization of organisms from atoms to molecules and cells to tissues to organs to organ systems to organisms.
SC.6.L.14.2: Investigate and explain the components of the scientific theory of cells (cell theory): all organisms are composed of cells (single-celled or multi-cellular), all cells come from pre-existing cells, and cells are the basic unit of life.
SC.6.L.14.3: Recognize and explore how cells of all organisms undergo similar processes to maintain homeostasis, including extracting energy from food, getting rid of waste, and reproducing.
SC.6.L.14.4: Compare and contrast the structure and function of major organelles of plant and animal cells, including cell wall, cell membrane, nucleus, cytoplasm, chloroplasts, mitochondria, and vacuoles.
SC.6.L.14.5: Identify and investigate the general functions of the major systems of the human body (digestive, respiratory, circulatory, reproductive, excretory, immune, nervous, and musculoskeletal) and describe ways these systems interact with each other to maintain homeostasis.
SC.6.L.14.6: Compare and contrast types of infectious agents that may infect the human body, including viruses, bacteria, fungi, and parasites.
SC.6.L.15.1: Analyze and describe how and why organisms are classified according to shared characteristics with emphasis on the Linnaean system combined with the concept of Domains.
SC.6.N.1.1: Define a problem from the sixth grade curriculum, use appropriate reference materials to support scientific understanding, plan and carry out scientific investigation of various types, such as systematic observations or experiments, identify variables, collect and organize data, interpret data in charts, tables, and graphics, analyze information, make predictions, and defend conclusions.
SC.6.N.1.2: Explain why scientific investigations should be replicable.
SC.6.N.1.3: Explain the difference between an experiment and other types of scientific investigation, and explain the relative benefits and limitations of each.
SC.6.N.1.4: Discuss, compare, and negotiate methods used, results obtained, and explanations among groups of students conducting the same investigation.
SC.6.N.1.5: Recognize that science involves creativity, not just in designing experiments, but also in creating explanations that fit evidence.
SC.6.N.2.1: Distinguish science from other activities involving thought.
SC.6.N.2.2: Explain that scientific knowledge is durable because it is open to change as new evidence or interpretations are encountered.
SC.6.N.2.3: Recognize that scientists who make contributions to scientific knowledge come from all kinds of backgrounds and possess varied talents, interests, and goals.
SC.6.N.3.1: Recognize and explain that a scientific theory is a well-supported and widely accepted explanation of nature and is not simply a claim posed by an individual.   Thus, the use of the term theory in science is very different than how it is used in everyday life.
SC.6.N.3.2: Recognize and explain that a scientific law is a description of a specific relationship under given conditions in the natural world. Thus, scientific laws are different from societal laws.
SC.6.N.3.3: Give several examples of scientific laws.
SC.6.N.3.4: Identify the role of models in the context of the sixth grade science benchmarks.
SC.6.P.11.1: Explore the Law of Conservation of Energy by differentiating between potential and kinetic energy. Identify situations where kinetic energy is transformed into potential energy and vice versa.
SC.6.P.12.1: Measure and graph distance versus time for an object moving at a constant speed. Interpret this relationship.
SC.6.P.13.1: Investigate and describe types of forces including contact forces and forces acting at a distance, such as electrical, magnetic, and gravitational.
SC.6.P.13.2: Explore the Law of Gravity by recognizing that every object exerts gravitational force on every other object and that the force depends on how much mass the objects have and how far apart they are.
SC.6.P.13.3: Investigate and describe that an unbalanced force acting on an object changes its speed, or direction of motion, or both.
SC.912.E.7.3: Differentiate and describe the various interactions among Earth systems, including: atmosphere, hydrosphere, cryosphere, geosphere, and biosphere.
SC.912.E.7.5: Predict future weather conditions based on present observations and conceptual models and recognize limitations and uncertainties of such predictions.
SC.912.E.7.6: Relate the formation of severe weather to the various physical factors.
SC.912.L.14.2: Relate structure to function for the components of plant and animal cells. Explain the role of cell membranes as a highly selective barrier (passive and active transport).
SC.912.L.14.3: Compare and contrast the general structures of plant and animal cells. Compare and contrast the general structures of prokaryotic and eukaryotic cells.
SC.912.L.16.14: Describe the cell cycle, including the process of mitosis. Explain the role of mitosis in the formation of new cells and its importance in maintaining chromosome number during asexual reproduction.
SC.912.P.10.4: Describe heat as the energy transferred by convection, conduction, and radiation, and explain the connection of heat to change in temperature or states of matter.
MA.K12.MTR.1.1: Actively participate in effortful learning both individually and collectively.  

Mathematicians who participate in effortful learning both individually and with others: 

  • Analyze the problem in a way that makes sense given the task. 
  • Ask questions that will help with solving the task. 
  • Build perseverance by modifying methods as needed while solving a challenging task. 
  • Stay engaged and maintain a positive mindset when working to solve tasks. 
  • Help and support each other when attempting a new method or approach.

 

Clarifications:
Teachers who encourage students to participate actively in effortful learning both individually and with others:
  • Cultivate a community of growth mindset learners. 
  • Foster perseverance in students by choosing tasks that are challenging. 
  • Develop students’ ability to analyze and problem solve. 
  • Recognize students’ effort when solving challenging problems.
MA.K12.MTR.2.1: Demonstrate understanding by representing problems in multiple ways.  

Mathematicians who demonstrate understanding by representing problems in multiple ways:  

  • Build understanding through modeling and using manipulatives.
  • Represent solutions to problems in multiple ways using objects, drawings, tables, graphs and equations.
  • Progress from modeling problems with objects and drawings to using algorithms and equations.
  • Express connections between concepts and representations.
  • Choose a representation based on the given context or purpose.
Clarifications:
Teachers who encourage students to demonstrate understanding by representing problems in multiple ways: 
  • Help students make connections between concepts and representations.
  • Provide opportunities for students to use manipulatives when investigating concepts.
  • Guide students from concrete to pictorial to abstract representations as understanding progresses.
  • Show students that various representations can have different purposes and can be useful in different situations. 
MA.K12.MTR.3.1: Complete tasks with mathematical fluency. 

Mathematicians who complete tasks with mathematical fluency:

  • Select efficient and appropriate methods for solving problems within the given context.
  • Maintain flexibility and accuracy while performing procedures and mental calculations.
  • Complete tasks accurately and with confidence.
  • Adapt procedures to apply them to a new context.
  • Use feedback to improve efficiency when performing calculations. 
Clarifications:
Teachers who encourage students to complete tasks with mathematical fluency:
  • Provide students with the flexibility to solve problems by selecting a procedure that allows them to solve efficiently and accurately.
  • Offer multiple opportunities for students to practice efficient and generalizable methods.
  • Provide opportunities for students to reflect on the method they used and determine if a more efficient method could have been used. 
MA.K12.MTR.4.1: Engage in discussions that reflect on the mathematical thinking of self and others. 

Mathematicians who engage in discussions that reflect on the mathematical thinking of self and others:

  • Communicate mathematical ideas, vocabulary and methods effectively.
  • Analyze the mathematical thinking of others.
  • Compare the efficiency of a method to those expressed by others.
  • Recognize errors and suggest how to correctly solve the task.
  • Justify results by explaining methods and processes.
  • Construct possible arguments based on evidence. 
Clarifications:
Teachers who encourage students to engage in discussions that reflect on the mathematical thinking of self and others:
  • Establish a culture in which students ask questions of the teacher and their peers, and error is an opportunity for learning.
  • Create opportunities for students to discuss their thinking with peers.
  • Select, sequence and present student work to advance and deepen understanding of correct and increasingly efficient methods.
  • Develop students’ ability to justify methods and compare their responses to the responses of their peers. 
MA.K12.MTR.5.1: Use patterns and structure to help understand and connect mathematical concepts. 

Mathematicians who use patterns and structure to help understand and connect mathematical concepts:

  • Focus on relevant details within a problem.
  • Create plans and procedures to logically order events, steps or ideas to solve problems.
  • Decompose a complex problem into manageable parts.
  • Relate previously learned concepts to new concepts.
  • Look for similarities among problems.
  • Connect solutions of problems to more complicated large-scale situations. 
Clarifications:
Teachers who encourage students to use patterns and structure to help understand and connect mathematical concepts:
  • Help students recognize the patterns in the world around them and connect these patterns to mathematical concepts.
  • Support students to develop generalizations based on the similarities found among problems.
  • Provide opportunities for students to create plans and procedures to solve problems.
  • Develop students’ ability to construct relationships between their current understanding and more sophisticated ways of thinking.
MA.K12.MTR.6.1: Assess the reasonableness of solutions. 

Mathematicians who assess the reasonableness of solutions: 

  • Estimate to discover possible solutions.
  • Use benchmark quantities to determine if a solution makes sense.
  • Check calculations when solving problems.
  • Verify possible solutions by explaining the methods used.
  • Evaluate results based on the given context. 
Clarifications:
Teachers who encourage students to assess the reasonableness of solutions:
  • Have students estimate or predict solutions prior to solving.
  • Prompt students to continually ask, “Does this solution make sense? How do you know?”
  • Reinforce that students check their work as they progress within and after a task.
  • Strengthen students’ ability to verify solutions through justifications. 
MA.K12.MTR.7.1: Apply mathematics to real-world contexts. 

Mathematicians who apply mathematics to real-world contexts:

  • Connect mathematical concepts to everyday experiences.
  • Use models and methods to understand, represent and solve problems.
  • Perform investigations to gather data or determine if a method is appropriate. • Redesign models and methods to improve accuracy or efficiency. 
Clarifications:
Teachers who encourage students to apply mathematics to real-world contexts:
  • Provide opportunities for students to create models, both concrete and abstract, and perform investigations.
  • Challenge students to question the accuracy of their models and methods.
  • Support students as they validate conclusions by comparing them to the given situation.
  • Indicate how various concepts can be applied to other disciplines.
ELA.K12.EE.1.1: Cite evidence to explain and justify reasoning.
Clarifications:
K-1 Students include textual evidence in their oral communication with guidance and support from adults. The evidence can consist of details from the text without naming the text. During 1st grade, students learn how to incorporate the evidence in their writing.

2-3 Students include relevant textual evidence in their written and oral communication. Students should name the text when they refer to it. In 3rd grade, students should use a combination of direct and indirect citations.

4-5 Students continue with previous skills and reference comments made by speakers and peers. Students cite texts that they’ve directly quoted, paraphrased, or used for information. When writing, students will use the form of citation dictated by the instructor or the style guide referenced by the instructor. 

6-8 Students continue with previous skills and use a style guide to create a proper citation.

9-12 Students continue with previous skills and should be aware of existing style guides and the ways in which they differ.

ELA.K12.EE.2.1: Read and comprehend grade-level complex texts proficiently.
Clarifications:
See Text Complexity for grade-level complexity bands and a text complexity rubric.
ELA.K12.EE.3.1: Make inferences to support comprehension.
Clarifications:
Students will make inferences before the words infer or inference are introduced. Kindergarten students will answer questions like “Why is the girl smiling?” or make predictions about what will happen based on the title page. Students will use the terms and apply them in 2nd grade and beyond.
ELA.K12.EE.4.1: Use appropriate collaborative techniques and active listening skills when engaging in discussions in a variety of situations.
Clarifications:
In kindergarten, students learn to listen to one another respectfully.

In grades 1-2, students build upon these skills by justifying what they are thinking. For example: “I think ________ because _______.” The collaborative conversations are becoming academic conversations.

In grades 3-12, students engage in academic conversations discussing claims and justifying their reasoning, refining and applying skills. Students build on ideas, propel the conversation, and support claims and counterclaims with evidence.

ELA.K12.EE.5.1: Use the accepted rules governing a specific format to create quality work.
Clarifications:
Students will incorporate skills learned into work products to produce quality work. For students to incorporate these skills appropriately, they must receive instruction. A 3rd grade student creating a poster board display must have instruction in how to effectively present information to do quality work.
ELA.K12.EE.6.1: Use appropriate voice and tone when speaking or writing.
Clarifications:
In kindergarten and 1st grade, students learn the difference between formal and informal language. For example, the way we talk to our friends differs from the way we speak to adults. In 2nd grade and beyond, students practice appropriate social and academic language to discuss texts.
ELD.K12.ELL.SC.1: English language learners communicate information, ideas and concepts necessary for academic success in the content area of Science.
ELD.K12.ELL.SI.1: English language learners communicate for social and instructional purposes within the school setting.
HE.6.C.1.3 (Archived Standard): Identify environmental factors that affect personal health.
HE.6.C.1.5 (Archived Standard): Explain how body systems are impacted by hereditary factors and infectious agents.



General Course Information and Notes

GENERAL NOTES

Laboratory investigations that include the use of scientific inquiry, research, measurement, problem solving, laboratory apparatus and technologies, experimental procedures, and safety procedures are an integral part of this course. The National Science Teachers Association (NSTA) recommends that at the middle school level, all students should have multiple opportunities every week to explore science laboratory investigations (labs). School laboratory investigations are defined by the National Research Council (NRC) as an experience in the laboratory, classroom, or the field that provides students with opportunities to interact directly with natural phenomena or with data collected by others using tools, materials, data collection techniques, and models (NRC, 2006, p. 3). Laboratory investigations in the middle school classroom should help all students develop a growing understanding of the complexity and ambiguity of empirical work, as well as the skills to calibrate and troubleshoot equipment used to make observations. Learners should understand measurement error; and have the skills to aggregate, interpret, and present the resulting data (NRC 2006, p. 77; NSTA, 2007).

Honors and Advanced Level Course Note: Advanced courses require a greater demand on students through increased academic rigor.  Academic rigor is obtained through the application, analysis, evaluation, and creation of complex ideas that are often abstract and multi-faceted.  Students are challenged to think and collaborate critically on the content they are learning. Honors level rigor will be achieved by increasing text complexity through text selection, focus on high-level qualitative measures, and complexity of task. Instruction will be structured to give students a deeper understanding of conceptual themes and organization within and across disciplines. Academic rigor is more than simply assigning to students a greater quantity of work.

Special Notes: 

Instructional Practices 
Teaching from a range of complex text is optimized when teachers in all subject areas implement the following strategies on a routine basis:

  1. Ensuring wide reading from complex text that varies in length.
  2. Making close reading and rereading of texts central to lessons.
  3. Emphasizing text-specific complex questions, and cognitively complex tasks, reinforce focus on the text and cultivate independence.
  4. Emphasizing students supporting answers based upon evidence from the text.
  5. Providing extensive research and writing opportunities (claims and evidence).

Science and Engineering Practices (NRC Framework for K-12 Science Education, 2010)

  • Asking questions (for science) and defining problems (for engineering).
  • Developing and using models.
  • Planning and carrying out investigations.
  • Analyzing and interpreting data.
  • Using mathematics, information and computer technology, and computational thinking.
  • Constructing explanations (for science) and designing solutions (for engineering).
  • Engaging in argument from evidence.
  • Obtaining, evaluating, and communicating information.

Florida’s Benchmarks for Excellent Student Thinking (B.E.S.T.) Standards
This course includes Florida’s B.E.S.T. ELA Expectations (EE) and Mathematical Thinking and Reasoning Standards (MTRs) for students. Florida educators should intentionally embed these standards within the content and their instruction as applicable. For guidance on the implementation of the EEs and MTRs, please visit https://www.cpalms.org/Standards/BEST_Standards.aspx and select the appropriate B.E.S.T. Standards package.

English Language Development ELD Standards Special Notes Section:
Teachers are required to provide listening, speaking, reading and writing instruction that allows English language learners (ELL) to communicate information, ideas and concepts for academic success in the content area of Science. For the given level of English language proficiency and with visual, graphic, or interactive support, students will interact with grade level words, expressions, sentences and discourse to process or produce language necessary for academic success The ELD standard should specify a relevant content area concept or topic of study chosen by curriculum developers and teachers which maximizes an ELL's need for communication and social skills. To access an ELL supporting document which delineates performance definitions and descriptors, please click on the following link: https://cpalmsmediaprod.blob.core.windows.net/uploads/docs/standards/eld/sc.pdf


General Information

Course Number: 2002050 Course Path: Section: Grades PreK to 12 Education Courses > Grade Group: Grades 6 to 8 Education Courses > Subject: Science > SubSubject: General Sciences >
Abbreviated Title: M/J COMP SCI 1 ADV
Course Attributes:
  • Class Size Core Required
  • Highly Qualified Teacher (HQT) Required
  • Florida Standards Course
  • Core Course
Course Type: Core Academic Course Course Level: 3
Course Status: State Board Approved
Grade Level(s): 6,7,8



Educator Certifications

Science (Elementary Grades 1-6)
Science (Secondary Grades 7-12)
Middle Grades Integrated Curriculum (Middle Grades 5-9)
Chemistry (Grades 6-12)
Biology (Grades 6-12)
Middle Grades General Science (Middle Grades 5-9)
Physics (Grades 6-12)
Earth/Space Science (Grades 6-12)
Elementary Education (Grades K-6)
Elementary Education (Elementary Grades 1-6)


There are more than 1892 related instructional/educational resources available for this on CPALMS. Click on the following link to access them: https://www.cpalms.org/PreviewCourse/Preview/21044