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Logistic Growth Model, Abstract Version 
     Alignment: MAFS.912.F-IF.2.4 

Task 

An important example of a model often used in biology or ecology to model population growth is 
called the logistic growth model. The general form of the logistic equation is  

 

𝑃(𝑡) =
𝐾𝑃0𝑒𝑟𝑡

𝐾+𝑃0(𝑒𝑟𝑡 −1)
. 

 

In this equation 𝑡 represents time, with 𝑡 = 0 corresponding to when the population in question is 

first measured; 𝐾, 𝑃0 and 𝑟 are all real numbers with 𝐾 being called the “carrying capacity” 

while 𝑟 is a growth rate and is normally a positive number. 
 

a. Explain why the value 𝑃0 represents the population when it is first measured. 
 

b. Explain why, as time elapses, the population stabilizes, approaching the value 𝐾. 
 

c. Explain how the behavior of 𝑃 changes if the growth rate 𝑟 is increased or decreased. 
 

d. Below is the graph of a particular logistic function  𝑃, showing the growth of a bacteria 

population. Using the graph, identify 𝑃0 and 𝐾. 
 

 
e. Using the values of 𝑃0 and 𝐾 from the previous part, sketch the graph of the logistic 

function 𝑄 given by 

𝑄(𝑡) =
𝐾𝑃0𝑒2𝑟𝑡

𝐾+𝑃0(𝑒2𝑟𝑡 −1)
. 

 

Note that 𝑄 is the same as 𝑃 except that the growth rate 𝑟 has been doubled. 
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Commentary 
 
This task is for instructional purposes only and students should already be familiar with some  
specific examples of logistic growth functions such as that given in ''Logistic growth model, 
concrete case.'' This is an important example of a function with many constants : 𝑃0 the initial 

population, 𝐾 the carrying capacity, and 𝑟 the growth rate. Each of these has a specific meaning 

which determines the shape of the graph and, in case of  𝑃0 and 𝐾, can be readily estimated using 
the graph. 
 

The goal of this task is to have students appreciate how the different constants (𝑃0, 𝐾, and 𝑟) 

influence the shape of the graph. Only 𝑟 has been changed here, in part (e), because it is the most 
abstract of these numbers. If the instructor wishes to change the other numbers, the function used 
to generate this particular graph is 
 

𝑃(𝑡) =
5

1+10𝑒−𝑡. 

 

Note that this is not given in the form of the logistic equation given above with 𝐾,   𝑃0,  and 𝑟. It 

corresponds, after algebraic manipulation, to the case where  𝑟 = 1,  𝐾 = 5,  𝑃0 =
5

11
. Showing this 

identity is a worthwhile algebraic exercise which requires careful manipulation of fractions and 
exponential functions. 
 
 
 
 
Solution 
 

a. The population is first measured when 𝑡 = 0. Plugging 𝑡 = 0 into the expression for 𝑃 gives 
 

𝑃(0) =
𝐾𝑃0𝑒𝑟⋅0

𝐾 + 𝑃0(𝑒𝑟⋅0 − 1)
 

=
𝐾𝑃0𝑒0

𝐾 + 𝑃0(𝑒0 − 1)
 

=
𝐾𝑃0

𝐾
 

= 𝑃0 
 

b. As the name suggests, the “carrying capacity” is the maximum population that the 
environment can sustain so it is, in this case, the value that the population approaches 

as 𝑡 grows. Expanding the expression for the denominator of   𝑃,  𝐾 − 𝑃0𝑒𝑟t−𝑃0, the 

exponential term  𝑃0𝑒𝑟t, grows rapidly as 𝑡 grows. The rest of the denominator, 𝐾 − 𝑃0, 

does not depend on 𝑡. So as 𝑡 grows, the denominator is better and better approximated 

by  𝑃0𝑒𝑟t. The numerator is  𝐾𝑃0𝑒𝑟t. Taking the quotient of  𝐾𝑃0𝑒𝑟t  by  𝑃0𝑒𝑟t  gives 𝐾, the 

carrying capacity. So as 𝑡 grows, the values of 𝑃 become closer and closer to  𝐾. 
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c. The rate 𝑟 determines how quickly the exponential function 𝑒𝑟t grows. Increasing 𝑟 will 

increase the rate of growth of 𝑒𝑟t. This means that the values of 𝑃 will approach the 

carrying capacity 𝐾 more rapidly since, as seen in part (b), it is the growth of the  𝑒𝑟t  term 

that make the population approach 𝐾. If 𝑟 is decreased, then 𝑒𝑟t  grows more slowly and the 

values of 𝑃 approach 𝐾 more slowly. 
 

d. The value 𝑃(0) is the 𝑦-intercept of the graph of 𝑃. This value is about half way 

between 0 and 1 and since the units in population for the graph are  10 million this means 

that there are about 5 million bacteria at the beginning of the experiment. The carrying 

capacity 𝐾 appears to be close to 5 which represents 50 million bacteria. 
 

If the actual formula for the function is given, then the  𝑦-intercept can be calculated exactly 
 

𝑃(0) =
5𝑒0

1+10𝑒0 =
5

11
. 

 

Since one unit on the graph represents 10,000,000 bacteria, there are a little 

under 5 million bacteria when the population is first measured. The carrying capacity 

is 50,000,000 as estimated above: since the 𝑒−𝑡   term, in the population formula, becomes 

less and less significant as 𝑡 grows the population approaches 51 units or 50,000,000. 
 

e. When the value r is doubled, looking at part (b), what this means is that the exponential 
term  𝑃0𝑒𝑟t  in the denominator becomes the dominant term more quickly, twice as quickly 
in fact. So we expect the population to grow more rapidly at the beginning before 
approaching the carrying capacity. This is shown in the graph below. Note that this graph is 

precise because the precise values of  𝐾, 𝑃0, and 𝑟 were used: not knowing this information 
the best one can do is draw a curve with the same initial population, the same carrying 
capacity, and which grows more rapidly initially. 
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