Zeroes and factorization of a general polynomial

Suppose p{.l!} is a polynomial of degree d=0

a. fp(0) = 0, show that p(z) is evenly divisible by Z.
b. Fp(1) = 0, show that p(x) is evenly divisible by £ — 1.
c. [fF7is areal number such thatp[’-"]l = 0, show that p{.l:]l is evenly divisible by & — -

d. Using part (c} show that P can have at mostd distinct roots, that is, there can be at mostd numbers 71, . . . ,T'd with

p(r)=---=plra) =0.
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Commentary

This task builds on “Zeroes and factorization of a quadratic function”™ parts | and Il. The teacher may wish to recall the result from the first of these
tasks, generalized to the polynomials of degree d considered here. This result, the division algorithm applied to polynomials, says that ifpl[;l:] isa
palynomial of degree d and II[.:C]I is a linear polynomial then

plz) =q(z)l(z) +r

where T is the remainder of the division process. a real number in this case.

Although a polynomial of degree d can have at most d roots, it is not easy, once the polynomial is of degree larger than two, to find those roots. In
fact, a closed form for the roots of a polynomial function is only available for degrees 2,3, and 4. The level of complexity of these expressions grows
rapidly.

This task is related to a very deep thearem in mathematics, the Fundamental Theorem of Algebra, which says that a polynomial of degree d always
has exactly d roots, provided complex numbers are allowed as roots and provided roots are counted with the proper “multiplicity” (for example the
polynomial f{x} =z has only one raot. 0, but this root occurs with “multiplicity” 2). The teacher may wish to take this occasion to mention this
impaortant theorem. The teacher may also wish to discuss the inductive structure of the argument in part (d): the impact of each root on the factorization
of the pulynomialp(m] builds upon the factorization found in the previous step.

Solution: 1
a. If0 is a root of the function p this means that p(0) = 0. Since p is a polynomial of degree d it is given by a formula
_ d d—1
plz) =ag2® +ag_12"~ +... +ap,
where @d 7 0. If we dividep{m} by &, using long division of polynomials, we will find
plz) =q(z)z +5
where q{a:] is a polynomial of degree d — 1 and the remainder § is a number. Plugging in & = 0 we find

0 =p(0)

Thus § = 0 and Sop(ﬁl) = mq(m) and p(m) is evenly divisible by & as desired.

Alternatively, we see from inspection thatp(ﬂ} = ayp and so ap is 0 when p{ﬂ} = 0 Since all other terms ofp{m] have at least one
power of Z_ we can conclude thatp{w} is evenly divisible by &. This argument is quicker than the preceding but does not generalize as
readily to the other parts of the problem.

b. If Lis a root of the function P this means thatp(l) = 0. if we divide p(m) by & — 1. using long division of polynomials, we will find
p(x) =q(z)(x—1) +=
where q[a:] is a polynomial of degree d — 1 and the remainder § is a number. Plugging in & = 1 we find

0 =p(1)
=q(1)(1—-1) +s

Thus § = 0 and Sop{m] = (33 — 1](1(33} andp{ﬂl] is evenly divisible by {33 — 1} as desired.
c. If7is a real number which is a root of P we have _’p['-"] = 0 Performing long division. as in part (). this time dividing p[m} by T — T gives
plz) =al(z)(z—7r) +s5
where a{m] is polynomial of degree d — 1 and 5 is a real number. Plugging in 7 we find
p(r) =a(r)(0) +s.

Since p{'!‘] = 0 we conclude that § = U and so & — 7 divides f evenly.
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d. Ifthere were d + 1 different real numbers 71, . . ,7d+1 which are all roots of P. we need to apply the argument of part (c}d + 1 times
and will find that this is not possible because it would give too many factors, of the form & — 74, of P. Concretely, applying part (c) to 71 we
find

p(e) =pi(z)(z—m)
where Py [m] has degree d — 1. Now, evaluating at 79 gives
0 =p(rz) =pi(rz)(r2 —r1).

Since 71 and T2 are distinct, this means that 79 — 71 = 0 so we must have Py [7'2} =0

Repeating the above argument with Py [:1!] in place ofp[:l!] we conclude that
pi(z) = pa(z)(z —12)
where Pg {33} is a polynomial of degree d— 2. S0 we have
p(z) = pa(z)(z —71)(z —ra).

Continuing in the same way we find

But now we see that when we plug in Td—1 we get
Pra+1) =ag (Ta1 —T1)(Ta1 —72) ... (T —Ta)

and this is not zero because @4 is not zero and Tg+1 is distinct from the other roots 71,...,74.

Part (d) of this problem is closely related to a very important result in mathematics called the Fundamental Theorem of Algebra. This says
that a polynomial of degree d has d roots provided that complex numbers are allowed for solutions and provided the roots are counted with
the appropriate “multiplicity.” It is interesting to note that limiting the number of possible solutions can be done, as in this task, within the
high school curriculum: on the other hand, showing that d solutions to a polynomial of degree d always exist (when counted appropriately)
remains to this day a very difficult problem.
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