Zoology   (#2000410)

Version for Academic Year:

Course Standards

General Course Information and Notes

General Notes

Laboratory investigations that include the use of scientific inquiry, research, measurement, problem solving, laboratory apparatus and technologies, experimental procedures, and safety procedures are an integral part of this course. The National Science Teachers Association (NSTA) recommends that at the high school level, all students should be in the science lab or field, collecting data every week. School laboratory investigations (labs) are defined by the National Research Council (NRC) as an experience in the laboratory, classroom, or the field that provides students with opportunities to interact directly with natural phenomena or with data collected by others using tools, materials, data collection techniques, and models (NRC, 2006, p. 3). Laboratory investigations in the high school classroom should help all students develop a growing understanding of the complexity and ambiguity of empirical work, as well as the skills to calibrate and troubleshoot equipment used to make observations. Learners should understand measurement error; and have the skills to aggregate, interpret, and present the resulting data (National Research Council, 2006, p.77; NSTA, 2007).

Special Notes: 
Instructional Practices
 
Teaching from a range of complex text is optimized when teachers in all subject areas implement the following strategies on a routine basis: 

  1. Ensuring wide reading from complex text that varies in length.
  2. Making close reading and rereading of texts central to lessons.
  3. Emphasizing text-specific complex questions, and cognitively complex tasks, reinforce focus on the text and cultivate independence.
  4. Emphasizing students supporting answers based upon evidence from the text.
  5. Providing extensive research and writing opportunities (claims and evidence).


Science and Engineering Practices
 (NRC Framework for K-12 Science Education, 2010)

  • Asking questions (for science) and defining problems (for engineering).
  • Developing and using models.
  • Planning and carrying out investigations.
  • Analyzing and interpreting data.
  • Using mathematics, information and computer technology, and computational thinking.
  • Constructing explanations (for science) and designing solutions (for engineering).
  • Engaging in argument from evidence.
  • Obtaining, evaluating, and communicating information.

Literacy Standards in Science
Secondary science courses include reading standards for literacy in science and technical subjects 6-12 and writing standards for literacy in history/social studies, science, and technical subjects 6-12. The courses also include speaking and listening standards. For a complete list of standards required for this course click on the blue tile labeled course standards. You may also download the complete course including all required standards and notes sections using the export function located at the top of this page.

English Language Development ELD Standards Special Notes Section:
Teachers are required to provide listening, speaking, reading and writing instruction that allows English language learners (ELL) to communicate information, ideas and concepts for academic success in the content area of Science. For the given level of English language proficiency and with visual, graphic, or interactive support, students will interact with grade level words, expressions, sentences and discourse to process or produce language necessary for academic success The ELD standard should specify a relevant content area concept or topic of study chosen by curriculum developers and teachers which maximizes an ELL's need for communication and social skills. To access an ELL supporting document which delineates performance definitions and descriptors, please click on the following link: https://cpalmsmediaprod.blob.core.windows.net/uploads/docs/standards/eld/sc.pdf

General Information

Course Number: 2000410
Course Path:
Abbreviated Title: ZOOLOGY
Number of Credits: One (1) credit
Course Length: Year (Y)
Course Type: Elective Course
Course Level: 2
Course Status: Course Approved
Grade Level(s): 9,10,11,12

Educator Certifications

One of these educator certification options is required to teach this course.

Student Resources

Vetted resources students can use to learn the concepts and skills in this course.

Original Student Tutorials

Classy Chordates Part 1:

Learn the unique characteristics of four classes of underwater animals within phyla chordata, including tunicates, lancelets, lampreys, rays, sharks, and chimeras, in this interactive tutorial.

This is part 1 in a two-part series. Click to open Part 2 to learn about more familiar classes of animals in phylum chordata.

Type: Original Student Tutorial

Classy Chordates: Part 2:

Explore the unique characteristics of bony fish, amphibians, reptiles, birds, and mammals from phylum chordata in this interactive tutorial.

This is part 2 in a two-part series. Click to open Part 1 to learn about less familiar classes of animals in phylum chordata.

Type: Original Student Tutorial

Major Parts of the Human Brain Part 3: The Cerebrum, Cerebellum, and Meninges:

Explore the cerebrum and the cerebellum--the seats of thoughts and emotions in the human brain. You'll also learn about their functions and how they are surrounded and protected by the meninges..

This interactive tutorial is part 3 in a three-part series about the human brain. Click below to open other tutorials in this series.

Type: Original Student Tutorial

Major Parts of the Human Brain Part 2: The Hypothalamus and Thalamus:

Explore the hypothalamus and the thalamus, two regions in the center of the human brain that are among the areas responsible for constantly controlling mechanisms that we are hardly aware of, such as keeping our body temperature stable. 

This interactive tutorial is part 2 in a three-part series about the human brain. Click below to continue this series.

Type: Original Student Tutorial

Major Parts of the Human Brain Part 1: The Brainstem:

Learn about the three components that make up the brainstem of the human brain, including their specific functions and how the brainstem relates to the brain and the rest of the body.

This interactive tutorial is part 1 in a three-part series about the human brain. Click below to continue this series.

Type: Original Student Tutorial

Classifying Animals Part 2: Annelids, Nematodes, Arthropods, Sea Stars, and Chordates:

Continue your tour of Kingdom Animalia by exploring the similarities and unique characteristics of annelids, nematodes, arthropods, echinoderms, and chordates. In this interactive tutorial, you'll also review animals from the four phyla we met in Part 1.

This is Part 2 in a series. Click below to open the other tutorials in this series.

Type: Original Student Tutorial

Classifying Animals Part 1: Sponges, Cnidarians, Flatworms, and Mollusks:

Dive into the fascinating world of animals and explore the similarities and unique characteristics of sponges, cnidarians, flatworms, and mollusks in this interactive tutorial.

This is Part 1 in a series. Click below to open the other tutorials in this series.

Type: Original Student Tutorial

The Year-Round School Debate: Identifying Faulty Reasoning – Part Two:

This is Part Two of a two-part series. Learn to identify faulty reasoning in this interactive tutorial series. You'll learn what some experts say about year-round schools, what research has been conducted about their effectiveness, and how arguments can be made for and against year-round education. Then, you'll read a speech in favor of year-round schools and identify faulty reasoning within the argument, specifically the use of hasty generalizations.

Make sure to complete Part One before Part Two! Click HERE to launch Part One.

Type: Original Student Tutorial

The Year-Round School Debate: Identifying Faulty Reasoning – Part One:

Learn to identify faulty reasoning in this two-part interactive English Language Arts tutorial. You'll learn what some experts say about year-round schools, what research has been conducted about their effectiveness, and how arguments can be made for and against year-round education. Then, you'll read a speech in favor of year-round schools and identify faulty reasoning within the argument, specifically the use of hasty generalizations. 

Make sure to complete both parts of this series! Click HERE to open Part Two. 

Type: Original Student Tutorial

Evaluating an Argument – Part Four: JFK’s Inaugural Address:

Examine President John F. Kennedy's inaugural address in this interactive tutorial. You will examine Kennedy's argument, main claim, smaller claims, reasons, and evidence.

In Part Four, you'll use what you've learned throughout this series to evaluate Kennedy's overall argument.

Make sure to complete the previous parts of this series before beginning Part 4.

  • Click HERE to launch Part One.
  • Click HERE to launch Part Two.
  • Click HERE to launch Part Three.

Type: Original Student Tutorial

Evaluating an Argument – Part Three: JFK’s Inaugural Address:

Examine President John F. Kennedy's inaugural address in this interactive tutorial. You will examine Kennedy's argument, main claim, smaller claims, reasons, and evidence. By the end of this four-part series, you should be able to evaluate his overall argument. 

In Part Three, you will read more of Kennedy's speech and identify a smaller claim in this section of his speech. You will also evaluate this smaller claim's relevancy to the main claim and evaluate Kennedy's reasons and evidence. 

Make sure to complete all four parts of this series!

  • Click HERE to launch Part One.
  • Click HERE to launch Part Two.
  • Click HERE to launch Part Four.

Type: Original Student Tutorial

Structure and Function of Fungi: Asexual and Sexual Reproduction (2 of 3):

Learn about asexual and sexual reproduction of fungi in this interactive tutorial. This is Part 2 of 3 in this series on the Structure and Function of Fungi. 

Click  to open Part 1, Basic Characteristics and Structures

Click HERE to open Part 3, Nutrition and Mutualistic Relationships

Type: Original Student Tutorial

Ready for Takeoff! -- Part Two:

This is Part Two of a two-part tutorial series. In this interactive tutorial, you'll practice identifying a speaker's purpose using a speech by aviation pioneer Amelia Earhart. You will examine her use of rhetorical appeals, including ethos, logos, pathos, and kairos. Finally, you'll evaluate the effectiveness of Earhart's use of rhetorical appeals.

Be sure to complete Part One first. Click here to launch PART ONE.

Type: Original Student Tutorial

Ready for Takeoff! -- Part One:

This is Part One of a two-part tutorial series. In this interactive tutorial, you'll practice identifying a speaker's purpose using a speech by aviation pioneer Amelia Earhart. You will examine her use of rhetorical appeals, including ethos, logos, pathos, and kairos. Finally, you'll evaluate the effectiveness of Earhart's use of rhetorical appeals. 

Click here to launch PART TWO.

Type: Original Student Tutorial

Biodiversity and Non-native Species:

See how non-native species can impact ecosystem biodiversity to create problems for native species in this interactive tutorial.

Type: Original Student Tutorial

Endosymbiosis:

Explore the Theory of Endosymbiosis which links the origins of mitochondria and chloroplasts in eukaryotes with prokaryotic ancestors. 

Type: Original Student Tutorial

Expository Writing: Eyes in the Sky (Part 4 of 4):

Practice writing different aspects of an expository essay about scientists using drones to research glaciers in Peru. This interactive tutorial is part four of a four-part series. In this final tutorial, you will learn about the elements of a body paragraph. You will also create a body paragraph with supporting evidence. Finally, you will learn about the elements of a conclusion and practice creating a “gift.” 

This tutorial is part four of a four-part series. Click below to open the other tutorials in this series.

Type: Original Student Tutorial

Conditions for Natural Selection:

Explore three conditions required for natural selection and see how these conditions lead to allele frequency shifts in a population. 

Type: Original Student Tutorial

Expository Writing: Eyes in the Sky (Part 3 of 4):

Learn how to write an introduction for an expository essay in this interactive tutorial. This tutorial is the third part of a four-part series. In previous tutorials in this series, students analyzed an informational text and video about scientists using drones to explore glaciers in Peru. Students also determined the central idea and important details of the text and wrote an effective summary. In part three, you'll learn how to write an introduction for an expository essay about the scientists' research. 

This tutorial is part three of a four-part series. Click below to open the other tutorials in this series.

Type: Original Student Tutorial

Structure and Function of Fungi: Basic Characteristics and Structures (1 of 3):

Learn about the basic characteristics and structures of fungi in Part 1 of 3 in this series on the Structure and Function of Fungi.

Click  to open Part 2, Asexual and Sexual Reproduction

Click HERE to open Part 3, Nutrition and Mutualistic Relationships

Type: Original Student Tutorial

Structure and Function of Fungi: Nutrition and Mutualistic Relationships (3 of 3):

Learn about the nutrition and mutualistic relationships of fungi in this interactive tutorial. This is Part 3 of 3 in this series on the Structure and Function of Fungi. 

Click  to open Part 1, Basic Characteristics and Structures

Click HERE to open Part 2, Asexual and Sexual Reproduction

Type: Original Student Tutorial

Drones and Glaciers: Eyes in the Sky (Part 2 of 4):

Learn how to identify the central idea and important details of a text, as well as how to write an effective summary in this interactive tutorial. This tutorial is the second tutorial in a four-part series that examines how scientists are using drones to explore glaciers in Peru. 

This tutorial is part two of a four-part series. Click below to open the other tutorials in this series.

Type: Original Student Tutorial

Drones and Glaciers: Eyes in the Sky (Part 1 of 4):

Learn about how researchers are using drones, also called unmanned aerial vehicles or UAVs, to study glaciers in Peru. In this interactive tutorial, you will practice citing text evidence when answering questions about a text.

This tutorial is part one of a four-part series. Click below to open the other tutorials in this series.

Type: Original Student Tutorial

Hallowed Words: Evaluating a Speaker's Effectiveness:

Learn how to evaluate a speaker's point of view, reasoning, and use of evidence. In this interactive tutorial, you'll examine Abraham Lincoln's "Gettysburg Address" and evaluate the effectiveness of his words by analyzing his use of reasoning and evidence. 

Type: Original Student Tutorial

Ant Populations in the Kenyan Savannah:

Explore living and nonliving factors affecting populations of ants in Kenya and learn a bit about the importance of the acacia tree in this savannah ecosystem. 

Type: Original Student Tutorial

Untangling Food Webs:

Learn how living organisms can be organized into food webs and how energy is transferred through a food web from producers to consumers to decomposers. This interactive tutorial also includes interactive knowledge checks.

Type: Original Student Tutorial

The Macromolecules of Life: Carbohydrates:

Learn about the basic molecular structures and primary functions of carbohydrates with this interactive tutorial.

This is part 2 in a five-part series. Click below to explore other tutorials in the series.

Type: Original Student Tutorial

Periphyton in the Everglades:

Explore species interdependence focusing on roles played by periphyton in the Everglades ecosystem with this interactive tutorial.

Type: Original Student Tutorial

Ecological Data Analysis:

See how data are interpreted to better understand the reproductive strategies taken by sea anemones with this interactive tutorial.

Type: Original Student Tutorial

Beyond Natural Selection: Mechanisms of Evolution :

Explore mechanisms of evolutionary change other than natural selection such as mutation, gene flow, and genetic drift in this interactive tutorial.

Type: Original Student Tutorial

Ecology Sampling Strategies:

Examine field sampling strategies used to gather data and avoid bias in ecology research. This interactive tutorial features the CPALMS Perspectives video .

Type: Original Student Tutorial

The Macromolecules of Life: Lipids:

Learn about the basic molecular structures and primary functions of lipids with this interactive tutorial.

This is part 3 in a five-part series. Click below to explore other tutorials in the series.

Type: Original Student Tutorial

The Mystery of Muscle Cell Metabolism:

Explore the mystery of muscle cell metabolism and how cells are able to meet the need for a constant supply of energy. In this interactive tutorial, you'll identify the basic structure of adenosine triphosphate (ATP), explain how ATP’s structure is related it its job in the cell, and connect this role to energy transfers in living things.

Type: Original Student Tutorial

Comparing Mitosis and Meiosis:

Compare and contrast mitosis and meiosis in this interactive tutorial. You'll also relate them to the processes of sexual and asexual reproduction and their consequences for genetic variation.

Type: Original Student Tutorial

Natural Selection:

Describe the conditions required for natural selection and tell how it can result in changes in species over time. In this interactive tutorial, follow Charles Darwin through a life of exploration, observation, and experimentation to see how he developed his ideas.

Type: Original Student Tutorial

The Macromolecules of Life: Proteins:

Learn about the basic molecular structures and primary functions of proteins with this interactive tutorial.

This is part 4 in a five-part series. Click below to explore other tutorials in the series.

Type: Original Student Tutorial

Evolution: Examining the Evidence:

Learn how to identify explicit evidence and understand implicit meaning in a text.

You should be able to explain how different types of scientific evidence support the theory of evolution, including direct observation, fossils, DNA, biogeography, and comparative anatomy and embryology.

Type: Original Student Tutorial

Earliest Beginnings:

Learn how to identify and describe the leading scientific explanations of the origin of life on Earth.

Type: Original Student Tutorial

What Makes Your Blood Flow?:

Learn about factors that affect the blood flow in your body in this interactive tutorial.

Type: Original Student Tutorial

Graphing Quadratic Functions:

Follow as we discover key features of a quadratic equation written in vertex form in this interactive tutorial.

Type: Original Student Tutorial

The Macromolecules of Life: Nucleic Acids:

Learn to identify and describe the structural and functional features of nucleic acids, one of the 4 primary macromolecule groups in biological systems, with this interactive tutorial.

This is Part 3 in 5-part series. Click below to open the other tutorials in the series:

Type: Original Student Tutorial

Diagramming Diversity 1:

Learn how living organisms are classified according to their characteristics, which reflects their evolutionary history and relationships, as you complete this interactive tutorial.

Type: Original Student Tutorial

Diagramming Diversity II:

Learn to explain how a phylogenetic tree, or cladogram, is used to classify living organisms based on inherited similarities, and how it relates to other methods of hierarchical classification.

Type: Original Student Tutorial

The Macromolecules of Life: Overview:

Learn to identify the four basic biological macromolecules (carbohydrates, lipids, proteins, and nucleic acids) by structure and function with this interactive tutorial.

This is part 1 in a five-part series. Click below to explore other tutorials in the series.

Type: Original Student Tutorial

Classification using DNA:

Learn how to explain differences in genetic and non-genetic classification methods. You should also know why genetic evidence is very powerful for understanding evolutionary relationships among organisms.

Type: Original Student Tutorial

Classification of Living Organisms:

Explore the characteristics of domains and kingdoms used to classify living organisms with this interactive tutorial. You also will learn more about the reasons behind how and why this classification is done.

Type: Original Student Tutorial

Diving the Depths of Underwater Life:

Learn how the distribution of aquatic life forms is affected by light, temperature, and salinity with this interactive tutorial.

Type: Original Student Tutorial

Energy and Carbon in Photosynthesis and Cellular Respiration:

Learn more about photosynthesis and cellular respiration. In this interactive tutorial, you will gain awareness of the connections between these two very important processes with regard to energy and carbon.

Type: Original Student Tutorial

Brain Basics:

Learn how to name the major regions of the brain and identify them on a diagram with this interactive tutorial.

Type: Original Student Tutorial

Educational Game

EvoDots - Software for Evolutionary Analysis:

The software application, which allows the students to simulate natural selection in a population of dots, goes along with a tutorial which is also at this site.

Type: Educational Game

Lesson Plan

Meet the Family: Investigating Primate Relationships:

In this lesson students will see the different types of evidence scientists use to understand evolutionary relationships among organisms. They will first practice by using shared physical characteristics to predict relationships among members of the cat family and then use this approach to predict primate relationships. They will compare their predictions to evidence provided by analyzing amino acid sequences and build a phylogenetic tree based on these sequences. Finally, they will look at the tree in the context of time in order to see divergence times.

Type: Lesson Plan

Perspectives Video: Experts

Jumping Robots and Quadratics:

Jump to it and learn more about how quadratic equations are used in robot navigation problem solving!

Type: Perspectives Video: Expert

Mathematically Exploring the Wakulla Caves:

The tide is high! How can we statistically prove there is a relationship between the tides on the Gulf Coast and in a fresh water spring 20 miles from each other?

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Mutations and Genetic Diversity:

Mutations don't just happen to comic book heroes and villains. Learn more about this natural biological phenomenon!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Measuring Biodiversity to Evaluate Human Impact:

Humans impact the environment in a number of ways. Learn more about how we interact with nature!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Physical Environment and Natural Selection:

This video is a natural selection for learning about evolution.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Methods of Evolution in Animal Populations Big and Small:

Interested in how evolution happens? Drift into this video and go with the flow.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Protect our Fisheries from Invasive Species:

Lionfish and other species are roaring past our native populations. Learn more.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Perspectives Video: Professional/Enthusiast

Unit Conversions:

Get fired up as you learn more about ceramic glaze recipes and mathematical units.

Type: Perspectives Video: Professional/Enthusiast

Presentation/Slideshow

Cell Processes and Energy: Photosynthesis and Respirataion:

This presentation, a narrated PowerPoint, provides detailed information regarding photosynthesis and cellular respiration. It is provided by a teacher for his students, but is well-done and engaging enough to be useful for other students.

Type: Presentation/Slideshow

Problem-Solving Tasks

Finding Parabolas through Two Points:

This problem-solving task challenges students to find all quadratic functions described by given equation and coordinates, and describe how the graphs of those functions are related to one another.

Type: Problem-Solving Task

Weed Killer:

The principal purpose of the task is to explore a real-world application problem with algebra, working with units and maintaining reasonable levels of accuracy throughout. Students are asked to determine which product will be the most economical to meet the requirements given in the problem.

Type: Problem-Solving Task

Dinosaur Bones:

The purpose of this task is to illustrate through an absurd example the fact that in real life quantities are reported to a certain level of accuracy, and it does not make sense to treat them as having greater accuracy.

Type: Problem-Solving Task

Bus and Car:

This task operates at two levels. In part it is a simple exploration of the relationship between speed, distance, and time. Part (c) requires understanding of the idea of average speed, and gives an opportunity to address the common confusion between average speed and the average of the speeds for the two segments of the trip.

At a higher level, the task addresses MAFS.912.N-Q.1.3, since realistically neither the car nor the bus is going to travel at exactly the same speed from beginning to end of each segment; there is time traveling through traffic in cities, and even on the autobahn the speed is not constant. Thus students must make judgments about the level of accuracy with which to report the result.

Type: Problem-Solving Task

Accuracy of Carbon 14 Dating I:

This task examines, from a mathematical and statistical point of view, how scientists measure the age of organic materials by measuring the ratio of Carbon 14 to Carbon 12. The focus here is on the statistical nature of such dating.

Type: Problem-Solving Task

Accuracy of Carbon 14 Dating II:

This task examines, from a mathematical and statistical point of view, how scientists measure the age of organic materials by measuring the ratio of Carbon 14 to Carbon 12. The focus here is on the statistical nature of such dating.

Type: Problem-Solving Task

Fuel Efficiency:

The problem requires students to not only convert miles to kilometers and gallons to liters but they also have to deal with the added complication of finding the reciprocal at some point.

Type: Problem-Solving Task

How Much Is a Penny Worth?:

This task asks students to calculate the cost of materials to make a penny, utilizing rates of grams of copper.

Type: Problem-Solving Task

Runner's World:

Students are asked to use units to determine if the given statement is valid.

Type: Problem-Solving Task

Harvesting the Fields:

This is a challenging task, suitable for extended work, and reaching into a deep understanding of units. Students are given a scenario and asked to determine the number of people required to complete the amount of work in the time described. The task requires students to exhibit , Make sense of problems and persevere in solving them. An algebraic solution is possible but complicated; a numerical solution is both simpler and more sophisticated, requiring skilled use of units and quantitative reasoning. Thus the task aligns with either MAFS.912.A-CED.1.1 or MAFS.912.N-Q.1.1, depending on the approach.

Type: Problem-Solving Task

Graphs of Quadratic Functions:

Students compare graphs of different quadratic functions, then produce equations of their own to satisfy given conditions.

This exploration can be done in class near the beginning of a unit on graphing parabolas. Students need to be familiar with intercepts, and need to know what the vertex is. It is effective after students have graphed parabolas in vertex form (y=a(x–h)2+k), but have not yet explored graphing other forms.

Type: Problem-Solving Task

Traffic Jam:

This resource poses the question, "how many vehicles might be involved in a traffic jam 12 miles long?"

This task, while involving relatively simple arithmetic, promps students to practice modeling (MP4), work with units and conversion (N-Q.1), and develop a new unit (N-Q.2). Students will also consider the appropriate level of accuracy to use in their conclusions (N-Q.3).

Type: Problem-Solving Task

Selling Fuel Oil at a Loss:

The task is a modeling problem which ties in to financial decisions faced routinely by businesses, namely the balance between maintaining inventory and raising short-term capital for investment or re-investment in developing the business.

Type: Problem-Solving Task

Felicia's Drive:

This task provides students the opportunity to make use of units to find the gas needed (). It also requires them to make some sensible approximations (e.g., 2.92 gallons is not a good answer to part (a)) and to recognize that Felicia's situation requires her to round up. Various answers to (a) are possible, depending on how much students think is a safe amount for Felicia to have left in the tank when she arrives at the gas station. The key point is for them to explain their choices. This task provides an opportunity for students to practice MAFS.K12.MP.2.1: Reason abstractly and quantitatively, and MAFS.K12.MP.3.1: Construct viable arguments and critique the reasoning of others.

Type: Problem-Solving Task

Graphs of Power Functions:

This task requires students to recognize the graphs of different (positive) powers of x.

Type: Problem-Solving Task

Calories in a Sports Drink:

This problem involves the meaning of numbers found on labels. When the level of accuracy is not given we need to make assumptions based on how the information is reported. An unexpected surprise awaits in this case, however, as no reasonable interpretation of the level of accuracy makes sense of the information reported on the bottles in parts (b) and (c). Either a miscalculation has been made or the numbers have been rounded in a very odd way.

Type: Problem-Solving Task

Tutorials

Risk Factors for Stroke:

In this Khan Academy video you will learn some of the modifiable and non-modifiable risk factors that can lead to a stroke.

Type: Tutorial

Cerebral Blood Supply: Part 2:

In this Khan Academy tutorial video, learn about the arteries that serve your brain. This is a continuation from Cerebral Blood Supply: Part 1.

Type: Tutorial

Cerebral Blood Supply: Part 1:

In this Khan Academy video tutorial, learn the main important arteries in the brain that bring necessary oxygen to all parts of the brain.

Type: Tutorial

What is a Stroke?:

Learn the conditions present in your brain that cause a stroke.

Type: Tutorial

Complications After a Heart Attack (Myocardial Infarction):

Learn about the complications that may occur after a heart attack (myocardial infarction).

Type: Tutorial

Treatment of Stroke with Interventions:

In this Khan academy video tutorial, learn about the possible treatments and interventions of different types of strokes.

Type: Tutorial

Graphs and Solutions of Functions in Quadratic Equations:

You will learn how the parent function for a quadratic function is affected when f(x) = x2.

Type: Tutorial

Healing after a Heart Attack (Myocardial Infarction):

Learn about the process your body goes through in healing after a heart attack (myocardial infarction).

Type: Tutorial

Graphing Quadractic Functions in Vertex Form:

This tutorial will help the students to identify the vertex of a parabola from the equation, and then graph the parabola.

Type: Tutorial

Graphing Quadratic Equations:

This tutorial helps the learners to graph the equation of a quadratic function using the coordinates of the vertex of a parabola and its x- intercepts.

Type: Tutorial

Graphing Exponential Equations:

This tutorial will help you to learn about exponential functions by graphing various equations representing exponential growth and decay.

Type: Tutorial

Taxonomy and the Tree of Life:

This Khan Academy video discusses the science of taxonomy and where humans fit into the tree of life.

Type: Tutorial

Species:

This Khan Academy video explains the definition of species and provides examples of animals that belong to the same species.

Type: Tutorial

Variation in a Species:

This Khan Academy video explains how variation can be introduced into a species and the importance of sexual reproduction in this process.

Type: Tutorial

DNA:

This Khan Academy video describes the structure of the molecule DNA in great detail. It also discuses the role DNA plays in the process of protein synthesis, explaining transcription and translation. The video discusses the relationship between DNA and chromosomes as well.

Type: Tutorial

Natural Selection and the Owl Butterfly:

This Khan Academy tutorial explains how the owl butterfly might have evolved the spots on its wings through natural selection.

Type: Tutorial

The Lungs and Pulmonary System:

This Khan Academy video discusses form and function in the respiratory system. All of the respiratory organs are discussed.

Type: Tutorial

The Circulatory System and the Heart:

This Khan Academy video explains the major vessels involved in the flow of blood and follows the steps that blood takes as it travels through the heart.

Type: Tutorial

Bone Growth :

This tutorial will help you to understand how bone growth is different from the growth of many other organs. Although bone may appear to be rigid and lifeless it is actually living tissue that is capable of growth. Unlike soft tissues, bone cannot simply grow by adding additional cells and removing cells that are no longer necessary. The calcium laid down in bone gives the skeleton the strength and rigidity needed to protect and support the body. This rigidity means that expansion requires addition of cells on the outside and, when necessary, the removal of calcium and other materials on the inside.

Type: Tutorial

Viruses:

This introduction to viruses by the Khan Academy addresses the question: Are viruses alive? How viruses enter cells and replicate is discussed in detail.

Type: Tutorial

Bacteria:

This video from the Khan Academy introduces the symbiotic relationship between the many bacteria that live inside the human body. The basics of bacteria structure, reproduction, and bacterial infections are discussed.

Type: Tutorial

ATP Synthesis During Photosynthesis:

Photosynthesis is often described as the reverse of cellular respiration. Respiration breaks down complex molecules to release energy that is used to make ATP. Photosynthesis takes energy from photons and uses it to build complex molecules. However both systems use an electron transport chain and associated proton pump and ATP synthase as a key part of the process. This tutorial will help you to understand the electron transport chain and ATP synthesis.

Type: Tutorial

Alveolar Pressure Changes During Inspiration and Expiration:

This tutorial helps you to understand the factors involved in air flow into and out of the lungs.

This challenging tutorial addresses the concept at a high level of complexity.

Type: Tutorial

Gas Exchange During Respiration:

This tutorial explains the exchange of oxygen and carbon dioxide within the respiratory system.

Type: Tutorial

Changes in the Partial Pressure of Oxygen and Carbon Dioxide in Blood:

This tutorial will help you to understand how the exchange of gases between the alveoli and the blood occurs by simple diffusion due to the changes in the partial pressure of oxygen and carbon dioxide.

This challenging tutorial addresses the concept at a high level of complexity.

Type: Tutorial

Gas Exchange During Respiration:

This tutorial is helpful in understanding how the exchange of oxygen and carbon dioxide takes place during the process of respiration.

Type: Tutorial

Bone Strength:

This tutorial will help you to understand which factors determine the strength of bone. Bone strength is determined by the internal structure, shape, and size of the bone. As we age, bone mass is lost, leading to a common condition called osteoporosis. This tutorial compares normal bone tissue with osteoporotic bone tissue.

Type: Tutorial

How Does the Ear Detect Sound Waves?:

This tutorial will help you to understand what determines the range of sound frequencies a person can hear. Sound travels through the air and through water as waves of changing pressure. The volume of sound is determined by the amplitude of the sound waves.

Type: Tutorial

Movement of Oxygen and Carbon Dioxide:

This tutorial will help you to understand how the movement of oxygen and carbon dioxide takes place between the alveoli and the blood by taking partial pressure into consideration. Oxygen diffuses from the air through the alveoli into the blood and carbon dioxide diffuses from the blood into the alveoli. This occurs due to differences in partial pressures.

This challenging tutorial addresses the concept at a high level of complexity.

Type: Tutorial

Conducting System of the Heart:

This tutorial will help you to understand how all of the components of the heart are able to work together without direct control from the central nervous system. This video shows that for proper function of the heartbeat, it is necessary that all of the muscle fibers in a region contract in unison.

Type: Tutorial

Baroreceptor Reflex Control of Blood Pressure:

Blood pressure is determined by the force of the blood acting on the walls of the blood vessels. Two factors determine the size of this force. One is the volume of blood being pumped through the vessel. The other is the size of the vessels. Changes in blood pressure can be caused by either a change in the amount of blood being pumped or by a change in the size of the blood vessels. Feedback mechanisms, described in this animation, will alter heart rate and blood vessel dilation to maintain blood pressure at appropriate levels.

Type: Tutorial

Chemoreceptor Reflex Control of Blood Pressure:

This tutorial will help students to understand how concentrations of gases in the blood change during breathing. This animation shows high carbon dioxide concentrations and low oxygen concentrations indicating that gas exchage is occurring at a slower than ideal rate. Because of this, heart rate increases or decreases to compensate the exchange of gas.

Type: Tutorial

Changes in Alveolar Pressure During Breathing:

This tutorial will help students understand how the difference in the alveloar pressure and the barometric air pressure allows the inspiration and expiration of air in the lungs.

Type: Tutorial

Dead Stuff: The Secret Ingredient in Our Food Chain:

When you picture the lowest levels of the food chain, you might imagine herbivores happily munching on lush, living green plants. But this idyllic image leaves out a huge (and slightly less appetizing) source of nourishment: dead stuff. John C. Moore details the "brown food chain," explaining how such unlikely delicacies as pond scum and animal feces contribute enormous amounts of energy to our ecosystems.

Type: Tutorial

What Causes Antibiotic Resistance?:

This short video describes the process of antibiotic resistance. Right now, you are inhabited by trillions of micro organisms. Many of these bacteria are harmless (or even helpful!), but there are a few strains of ‘super bacteria' that are pretty nasty -- and they're growing resistant to our antibiotics. Why is this happening? Kevin Wu details the evolution of this problem that presents a big challenge for the future of medicine.

Type: Tutorial

The Case of the Vanishing Honeybees:

In the past decade, the US honeybee population has been decreasing at an alarming and unprecedented rate. While this is obviously bad news for honeypots everywhere, bees also help feed us in a bigger way -- by pollinating our nation's crops. Emma Bryce investigates potential causes for this widespread colony collapse disorder.

Type: Tutorial

The Secret Life of Plankton:

This short video opens up the oceans' microscopic ecosystem, revealing its beauty and complexity. Footage from the Plankton Chronicles Project is used to create a video designed to ignite wonder and curiosity about this hidden world that underpins our own food chain.

Type: Tutorial

How the Heart Actually Pumps Blood:

This TED ED original lesson takes a closer look at how the heart pumps blood. For most of history, scientists weren't quite sure why our hearts were beating or even what purpose they served. Eventually, we realized that these thumping organs serve the vital task of pumping clean blood throughout the body. But how? Edmond Hui investigates how it all works by taking a closer look at the heart's highly efficient ventricle system.

Type: Tutorial

The Chemical Structure of DNA:


This tutorial will help the learners with their understanding of chemical structure of DNA.

Type: Tutorial

Refraction of Light:

This resource explores the electromagnetic spectrum and waves by allowing the learner to observe the refraction of light as it passes from one medium to another, study the relation between refraction of light and the refractive index of the medium, select from a list of materials with different refractive indicecs, and change the light beam from white to monochromatic and observe the difference.

Type: Tutorial

Human Eye Accommodation:

  • Observe how the eye's muscles change the shape of the lens in accordance with the distance to the object being viewed
  • Indicate the parts of the eye that are responsible for vision
  • View how images are formed in the eye

Type: Tutorial

Concave Spherical Mirrors:

  • Learn how a concave spherical mirror generates an image
  • Observe how the size and position of the image changes with the object distance from the mirror
  • Learn the difference between a real image and a virtual image
  • Learn some applications of concave mirrors

Type: Tutorial

Convex Spherical Mirrors:

  • Learn how a convex mirror forms the image of an object
  • Understand why convex mirrors form small virtual images
  • Observe the change in size and position of the image with the change in object's distance from the mirror
  • Learn some practical applications of convex mirrors

Type: Tutorial

Color Temperature in a Virtual Radiator:

  • Observe the change of color of a black body radiator upon changes in temperature
  • Understand that at 0 Kelvin or Absolute Zero there is no molecular motion

Type: Tutorial

Solar Cell Operation:

This resource explains how a solar cell converts light energy into electrical energy. The user will also learn about the different components of the solar cell and observe the relationship between photon intensity and the amount of electrical energy produced.

Type: Tutorial

Electromagnetic Wave Propagation:

  • Observe that light is composed of oscillating electric and magnetic waves
  • Explore the propagation of an electromagnetic wave through its electric and magnetic field vectors
  • Observe the difference in propagation of light of different wavelengths

Type: Tutorial

Basic Electromagnetic Wave Properties:

  • Explore the relationship between wavelength, frequency, amplitude and energy of an electromagnetic wave
  • Compare the characteristics of waves of different wavelengths

Type: Tutorial

Geometrical Construction of Ray Diagrams:

  • Learn to trace the path of propagating light waves using geometrical optics
  • Observe the effect of changing parameters such as focal length, object dimensions and position on image properties
  • Learn the equations used in determining the size and locations of images formed by thin lenses

Type: Tutorial

Video/Audio/Animations

Will an Ice Cube Melt Faster in Freshwater or Saltwater?:

With an often unexpected outcome from a simple experiment, students can discover the factors that cause and influence thermohaline circulation in our oceans. In two 45-minute class periods, students complete activities where they observe the melting of ice cubes in saltwater and freshwater, using basic materials: clear plastic cups, ice cubes, water, salt, food coloring, and thermometers. There are no prerequisites for this lesson but it is helpful if students are familiar with the concepts of density and buoyancy as well as the salinity of seawater. It is also helpful if students understand that dissolving salt in water will lower the freezing point of water. There are additional follow up investigations that help students appreciate and understand the importance of the ocean's influence on Earth's climate.

Type: Video/Audio/Animation

Marine fossils in the Arctic landscape:

In this video, research is presented describing scientific studies of marine fossils found in Arctic regions.

Type: Video/Audio/Animation

Zebrafish Heart Regeneration:


This video presentation will help to understand the regeneration process in a zebrafish. When the zebrafish heart is damaged, the wound site is rapidly sealed with a fibrin clot that stems bleeding within seconds. Following clot formation, the tissue that surrounds the heart muscle, the epicardium, gradually covers the fibrin clot via migration and cell division. Over the next few months, new cardiac muscle is produced and replaces the clot.

Type: Video/Audio/Animation

Mechanisms of Evolution:

This TED Ed video explains the mechanisms of evolutionary change: change in population size, sexual selection, mutation, gene flow, and natural selection.

Type: Video/Audio/Animation

Inquiry and Ocean Exploration:

Ocean explorer Robert Ballard gives a TED Talk relating to the mysteries of the ocean, and the importance of its continued exploration.

Type: Video/Audio/Animation

Photosynthesis:

  • Observe the photosynthesis mechanism in the plant
  • Learn about the main chemical reactions that takes place during photosynthesis
  • Learn how solar energy is converted into chemical energy

Type: Video/Audio/Animation

Graphing Lines 1:

Khan Academy video tutorial on graphing linear equations: "Algebra: Graphing Lines 1"

Type: Video/Audio/Animation

Photosynthesis:

This video provides an overview of photosynthesis.

Type: Video/Audio/Animation

Mount St. Helens: Rising From the Ashes :

In this NSF video and reading selection evolutionary biologist and ecologist John Bishop documents the return of living things to Mount St. Helens after the largest landslide in recorded history. This is a rare opportunity for scientists to get to study a devastated area and how it comes back from scratch in such detail.

Type: Video/Audio/Animation

Photosynthesis animation and other cell processes in animation:

This site has fantastic short Flash animations of intricate cell processes, including photosynthesis and the electron transport chain.

Type: Video/Audio/Animation

Pocket Mouse Evolution:

This simulation shows the spread of a favorable mutation through a population of pocket mice. Even a small selective advantage can lead to a rapid evolution of the population.

Type: Video/Audio/Animation

Variation Is Essential: How Does Variation Within a Population Affect the Survival of a Species?:

This is a lesson about phenotypical variation within populations and how these differences are essential for biological evolution. Students will use a model organism (in this case, kidney beans) to explore variation patterns and subsequently connect these differences to artificial & natural selection. The NGSS’ CrossCutting Concepts and Science & Engineering Practices are embedded throughout the lesson.

The main learning objectives are:

  • Using a model (kidney beans) to explore the natural variations within a population.
  • Measuring differences between individuals in a population (population of beans).
  • Describing how genetic/phenotypic variation is a key part of biological evolution because it is a prerequisite for natural selection.
  • Demonstrating in which ways genetic variation is advantageous to a population because it enables some individuals to adapt to the environment while maintaining the survival of the population.

The NGSS Performance Expectations covered are HS-LS4-2. & HS-LS4-4.

Type: Video/Audio/Animation

Virtual Manipulatives

Slope Slider:

In this activity, students adjust slider bars which adjust the coefficients and constants of a linear function and examine how their changes affect the graph. The equation of the line can be in slope-intercept form or standard form. This activity allows students to explore linear equations, slopes, and y-intercepts and their visual representation on a graph. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

Type: Virtual Manipulative

Graphing Equations Using Intercepts:

This resource provides linear functions in standard form and asks the user to graph it using intercepts on an interactive graph below the problem. Immediate feedback is provided, and for incorrect responses, each step of the solution is thoroughly modeled.

Type: Virtual Manipulative

The Blood Typing Game:

This educational game is about blood types, blood typing, and blood transfusions. Your challenge is to save patients in urgent need of blood transfusions. Your job is to decide what blood type these patients belong to in order to administer safe blood transfusions. At the end you will be evaluated: if you make no mistakes at all you will get all five blood drops.

Type: Virtual Manipulative

Graphing Lines:

Allows students access to a Cartesian Coordinate System where linear equations can be graphed and details of the line and the slope can be observed.

Type: Virtual Manipulative

Data Flyer:

Using this virtual manipulative, students are able to graph a function and a set of ordered pairs on the same coordinate plane. The constants, coefficients, and exponents can be adjusted using slider bars, so the student can explore the affect on the graph as the function parameters are changed. Students can also examine the deviation of the data from the function. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

Type: Virtual Manipulative

Function Flyer:

In this online tool, students input a function to create a graph where the constants, coefficients, and exponents can be adjusted by slider bars. This tool allows students to explore graphs of functions and how adjusting the numbers in the function affect the graph. Using tabs at the top of the page you can also access supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

Type: Virtual Manipulative

Natural Selection:

Students will explore natural selection by controlling the environment and causing mutations in bunnies. This will demonstrate how natural selection works in nature. They will have the opportunity to throw in different variables to see what will make their species of rabbit survive.

Type: Virtual Manipulative

Curve Fitting:

With a mouse, students will drag data points (with their error bars) and watch the best-fit polynomial curve form instantly. Students can choose the type of fit: linear, quadratic, cubic, or quartic. Best fit or adjustable fit can be displayed.

Type: Virtual Manipulative

Equation Grapher:

This interactive simulation investigates graphing linear and quadratic equations. Users are given the ability to define and change the coefficients and constants in order to observe resulting changes in the graph(s).

Type: Virtual Manipulative

Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this course.