Integrated Science 1 for Credit Recovery (#2002405) 


This document was generated on CPALMS - www.cpalms.org
You are not viewing the current course, please click the current year’s tab.
The course was/will be terminated at the end of School Year 2019 - 2020

Course Standards

Integrate Standards for Mathematical Practice (MP) as applicable.
  • MAFS.K12.MP.1.1 Make sense of problems and persevere in solving them.
  • MAFS.K12.MP.2.1 Reason abstractly and quantitatively.
  • MAFS.K12.MP.3.1 Construct viable arguments and critique the reasoning of others.
  • MAFS.K12.MP.4.1 Model with mathematics.
  • MAFS.K12.MP.5.1 Use appropriate tools strategically.
  • MAFS.K12.MP.6.1 Attend to precision.
  • MAFS.K12.MP.7.1 Look for and make use of structure.
  • MAFS.K12.MP.8.1 Look for and express regularity in repeated reasoning.

Name Description
SC.912.E.5.1: Cite evidence used to develop and verify the scientific theory of the Big Bang (also known as the Big Bang Theory) of the origin of the universe.
SC.912.E.5.2: Identify patterns in the organization and distribution of matter in the universe and the forces that determine them.
SC.912.E.5.4: Explain the physical properties of the Sun and its dynamic nature and connect them to conditions and events on Earth.
SC.912.E.5.7: Relate the history of and explain the justification for future space exploration and continuing technology development.
SC.912.E.5.8: Connect the concepts of radiation and the electromagnetic spectrum to the use of historical and newly-developed observational tools.
SC.912.E.6.1: Describe and differentiate the layers of Earth and the interactions among them.
SC.912.E.6.2: Connect surface features to surface processes that are responsible for their formation.
SC.912.E.6.3: Analyze the scientific theory of plate tectonics and identify related major processes and features as a result of moving plates.
SC.912.E.7.1: Analyze the movement of matter and energy through the different biogeochemical cycles, including water and carbon.
SC.912.E.7.3: Differentiate and describe the various interactions among Earth systems, including: atmosphere, hydrosphere, cryosphere, geosphere, and biosphere.
SC.912.L.14.1: Describe the scientific theory of cells (cell theory) and relate the history of its discovery to the process of science.
SC.912.L.14.2: Relate structure to function for the components of plant and animal cells. Explain the role of cell membranes as a highly selective barrier (passive and active transport).
SC.912.L.14.3: Compare and contrast the general structures of plant and animal cells. Compare and contrast the general structures of prokaryotic and eukaryotic cells.
SC.912.L.14.4: Compare and contrast structure and function of various types of microscopes.
SC.912.L.14.7: Relate the structure of each of the major plant organs and tissues to physiological processes.
SC.912.L.15.1: Explain how the scientific theory of evolution is supported by the fossil record, comparative anatomy, comparative embryology, biogeography, molecular biology, and observed evolutionary change.
SC.912.L.15.4: Describe how and why organisms are hierarchically classified and based on evolutionary relationships.
SC.912.L.15.5: Explain the reasons for changes in how organisms are classified.
SC.912.L.15.6: Discuss distinguishing characteristics of the domains and kingdoms of living organisms.
SC.912.L.15.8: Describe the scientific explanations of the origin of life on Earth.
SC.912.L.16.1: Use Mendel's laws of segregation and independent assortment to analyze patterns of inheritance.
SC.912.L.16.14: Describe the cell cycle, including the process of mitosis. Explain the role of mitosis in the formation of new cells and its importance in maintaining chromosome number during asexual reproduction.
SC.912.L.16.16: Describe the process of meiosis, including independent assortment and crossing over. Explain how reduction division results in the formation of haploid gametes or spores.
SC.912.L.16.17: Compare and contrast mitosis and meiosis and relate to the processes of sexual and asexual reproduction and their consequences for genetic variation.
SC.912.L.17.2: Explain the general distribution of life in aquatic systems as a function of chemistry, geography, light, depth, salinity, and temperature.
SC.912.L.17.3: Discuss how various oceanic and freshwater processes, such as currents, tides, and waves, affect the abundance of aquatic organisms.
SC.912.L.17.4: Describe changes in ecosystems resulting from seasonal variations, climate change and succession.
SC.912.L.17.9: Use a food web to identify and distinguish producers, consumers, and decomposers. Explain the pathway of energy transfer through trophic levels and the reduction of available energy at successive trophic levels.
SC.912.L.17.11: Evaluate the costs and benefits of renewable and nonrenewable resources, such as water, energy, fossil fuels, wildlife, and forests.
SC.912.L.18.1: Describe the basic molecular structures and primary functions of the four major categories of biological macromolecules.
SC.912.L.18.7: Identify the reactants, products, and basic functions of photosynthesis.
SC.912.L.18.8: Identify the reactants, products, and basic functions of aerobic and anaerobic cellular respiration.
SC.912.L.18.9: Explain the interrelated nature of photosynthesis and cellular respiration.
SC.912.L.18.12: Discuss the special properties of water that contribute to Earth's suitability as an environment for life: cohesive behavior, ability to moderate temperature, expansion upon freezing, and versatility as a solvent.
SC.912.N.1.1: Define a problem based on a specific  body of knowledge, for example: biology, chemistry, physics, and earth/space science, and do the following: 
  1. Pose questions about the natural world, (Articulate the purpose of the investigation and identify the relevant scientific concepts).
  2. Conduct systematic observations, (Write procedures that are clear and replicable. Identify observables and examine relationships between test (independent) variable and outcome (dependent) variable. Employ appropriate methods for accurate and consistent observations; conduct and record measurements at appropriate levels of precision. Follow safety guidelines).
  3. Examine books and other sources of information to see what is already known,
  4. Review what is known in light of empirical evidence, (Examine whether available empirical evidence can be interpreted in terms of existing knowledge and models, and if not, modify or develop new models).
  5. Plan investigations, (Design and evaluate a scientific investigation).
  6. Use tools to gather, analyze, and interpret data (this includes the use of measurement in metric and other systems, and also the generation and interpretation of graphical representations of data, including data tables and graphs), (Collect data or evidence in an organized way. Properly use instruments, equipment, and materials (e.g., scales, probeware, meter sticks, microscopes, computers) including set-up, calibration, technique, maintenance, and storage).
  7. Pose answers, explanations, or descriptions of events,
  8. Generate explanations that explicate or describe natural phenomena (inferences),
  9. Use appropriate evidence and reasoning to justify these explanations to others,
  10. Communicate results of scientific investigations, and
  11. Evaluate the merits of the explanations produced by others.
SC.912.N.1.2: Describe and explain what characterizes science and its methods.
SC.912.N.1.3: Recognize that the strength or usefulness of a scientific claim is evaluated through scientific argumentation, which depends on  critical and logical thinking, and the active consideration of alternative scientific explanations to explain the data presented.
SC.912.N.1.4: Identify sources of information and assess their reliability according to the strict standards of scientific investigation.
SC.912.N.1.6: Describe how scientific inferences are drawn from scientific observations and provide examples from the content being studied.
SC.912.N.1.7: Recognize the role of creativity in constructing scientific questions, methods and explanations.
SC.912.N.2.1: Identify what is science, what clearly is not science, and what superficially resembles science (but fails to meet the criteria for science).
SC.912.N.3.1: Explain that a scientific theory is the culmination of many scientific investigations drawing together all the current evidence concerning a substantial range of phenomena; thus, a scientific theory represents the most powerful explanation scientists have to offer.
SC.912.N.3.3: Explain that scientific laws are descriptions of specific relationships under given conditions in nature, but do not offer explanations for those relationships.
SC.912.N.3.4: Recognize that theories do not become laws, nor do laws become theories; theories are well supported explanations and laws are well supported descriptions.
SC.912.N.3.5: Describe the function of models in science, and identify the wide range of models used in science.
SC.912.P.8.1: Differentiate among the four states of matter.
SC.912.P.8.2: Differentiate between physical and chemical properties and physical and chemical changes of matter.
SC.912.P.8.3: Explore the scientific theory of atoms (also known as atomic theory) by describing changes in the atomic model over time and why those changes were necessitated by experimental evidence.
SC.912.P.8.4: Explore the scientific theory of atoms (also known as atomic theory) by describing the structure of atoms in terms of protons, neutrons and electrons, and differentiate among these particles in terms of their mass, electrical charges and locations within the atom.
SC.912.P.8.5: Relate properties of atoms and their position in the periodic table to the arrangement of their electrons.
SC.912.P.8.7: Interpret formula representations of molecules and compounds in terms of composition and structure.
SC.912.P.10.1: Differentiate among the various forms of energy and recognize that they can be transformed from one form to others.
SC.912.P.10.4: Describe heat as the energy transferred by convection, conduction, and radiation, and explain the connection of heat to change in temperature or states of matter.
SC.912.P.10.7: Distinguish between endothermic and exothermic chemical processes.
SC.912.P.10.20: Describe the measurable properties of waves and explain the relationships among them and how these properties change when the wave moves from one medium to another.
SC.912.P.12.3: Interpret and apply Newton's three laws of motion.
LAFS.910.RST.1.1 (Archived Standard): Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions.
LAFS.910.RST.1.2 (Archived Standard): Determine the central ideas or conclusions of a text; trace the text’s explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
LAFS.910.RST.1.3 (Archived Standard): Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text.
LAFS.910.RST.2.4 (Archived Standard): Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9–10 texts and topics.
LAFS.910.RST.2.5 (Archived Standard): Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
LAFS.910.RST.2.6 (Archived Standard): Analyze the author’s purpose in providing an explanation, describing a procedure, or discussing an experiment in a text, defining the question the author seeks to address.
LAFS.910.RST.3.7 (Archived Standard): Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words.
LAFS.910.RST.3.8 (Archived Standard): Assess the extent to which the reasoning and evidence in a text support the author’s claim or a recommendation for solving a scientific or technical problem.
LAFS.910.RST.3.9 (Archived Standard): Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.
LAFS.910.RST.4.10 (Archived Standard): By the end of grade 10, read and comprehend science/technical texts in the grades 9–10 text complexity band independently and proficiently.
LAFS.910.SL.1.1 (Archived Standard): Initiate and participate effectively in a range of collaborative discussions (one-on-one, in groups, and teacher-led) with diverse partners on grades 9–10 topics, texts, and issues, building on others’ ideas and expressing their own clearly and persuasively.
  1. Come to discussions prepared, having read and researched material under study; explicitly draw on that preparation by referring to evidence from texts and other research on the topic or issue to stimulate a thoughtful, well-reasoned exchange of ideas.
  2. Work with peers to set rules for collegial discussions and decision-making (e.g., informal consensus, taking votes on key issues, presentation of alternate views), clear goals and deadlines, and individual roles as needed.
  3. Propel conversations by posing and responding to questions that relate the current discussion to broader themes or larger ideas; actively incorporate others into the discussion; and clarify, verify, or challenge ideas and conclusions.
  4. Respond thoughtfully to diverse perspectives, summarize points of agreement and disagreement, and, when warranted, qualify or justify their own views and understanding and make new connections in light of the evidence and reasoning presented.
LAFS.910.SL.1.2 (Archived Standard): Integrate multiple sources of information presented in diverse media or formats (e.g., visually, quantitatively, orally) evaluating the credibility and accuracy of each source.
LAFS.910.SL.1.3 (Archived Standard): Evaluate a speaker’s point of view, reasoning, and use of evidence and rhetoric, identifying any fallacious reasoning or exaggerated or distorted evidence.
LAFS.910.SL.2.4 (Archived Standard): Present information, findings, and supporting evidence clearly, concisely, and logically such that listeners can follow the line of reasoning and the organization, development, substance, and style are appropriate to purpose, audience, and task.
LAFS.910.SL.2.5 (Archived Standard): Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest.
LAFS.910.WHST.1.1 (Archived Standard): Write arguments focused on discipline-specific content.
  1. Introduce precise claim(s), distinguish the claim(s) from alternate or opposing claims, and create an organization that establishes clear relationships among the claim(s), counterclaims, reasons, and evidence.
  2. Develop claim(s) and counterclaims fairly, supplying data and evidence for each while pointing out the strengths and limitations of both claim(s) and counterclaims in a discipline-appropriate form and in a manner that anticipates the audience’s knowledge level and concerns.
  3. Use words, phrases, and clauses to link the major sections of the text, create cohesion, and clarify the relationships between claim(s) and reasons, between reasons and evidence, and between claim(s) and counterclaims.
  4. Establish and maintain a formal style and objective tone while attending to the norms and conventions of the discipline in which they are writing.
  5. Provide a concluding statement or section that follows from or supports the argument presented.
LAFS.910.WHST.1.2 (Archived Standard): Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
  1. Introduce a topic and organize ideas, concepts, and information to make important connections and distinctions; include formatting (e.g., headings), graphics (e.g., figures, tables), and multimedia when useful to aiding comprehension.
  2. Develop the topic with well-chosen, relevant, and sufficient facts, extended definitions, concrete details, quotations, or other information and examples appropriate to the audience’s knowledge of the topic.
  3. Use varied transitions and sentence structures to link the major sections of the text, create cohesion, and clarify the relationships among ideas and concepts.
  4. Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
  5. Establish and maintain a formal style and objective tone while attending to the norms and conventions of the discipline in which they are writing.
  6. Provide a concluding statement or section that follows from and supports the information or explanation presented (e.g., articulating implications or the significance of the topic).
LAFS.910.WHST.2.4 (Archived Standard): Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
LAFS.910.WHST.2.5 (Archived Standard): Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience.
LAFS.910.WHST.2.6 (Archived Standard): Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology’s capacity to link to other information and to display information flexibly and dynamically.
LAFS.910.WHST.3.7 (Archived Standard): Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.
LAFS.910.WHST.3.8 (Archived Standard): Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the usefulness of each source in answering the research question; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and following a standard format for citation.
LAFS.910.WHST.3.9 (Archived Standard): Draw evidence from informational texts to support analysis, reflection, and research.
LAFS.910.WHST.4.10 (Archived Standard): Write routinely over extended time frames (time for reflection and revision) and shorter time frames (a single sitting or a day or two) for a range of discipline-specific tasks, purposes, and audiences.
ELD.K12.ELL.SC.1: English language learners communicate information, ideas and concepts necessary for academic success in the content area of Science.
ELD.K12.ELL.SI.1: English language learners communicate for social and instructional purposes within the school setting.
MAFS.912.N-Q.1.1 (Archived Standard): Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.
MAFS.912.N-Q.1.3 (Archived Standard): Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.



General Course Information and Notes

GENERAL NOTES

Laboratory investigations that include the use of scientific inquiry, research, measurement, problem solving, laboratory apparatus and technologies, experimental procedures, and safety procedures are an integral part of this course. The National Science Teachers Association (NSTA) recommends that at the high school level, all students should be in the science lab or field, collecting data every week. School laboratory investigations (labs) are defined by the National Research Council (NRC) as an experience in the laboratory, classroom, or the field that provides students with opportunities to interact directly with natural phenomena or with data collected by others using tools, materials, data collection techniques, and models (NRC, 2006, p. 3). Laboratory investigations in the high school classroom should help all students develop a growing understanding of the complexity and ambiguity of empirical work, as well as the skills to calibrate and troubleshoot equipment used to make observations. Learners should understand measurement error; and have the skills to aggregate, interpret, and present the resulting data (National Research Council, 2006, p.77; NSTA, 2007).

Special Notes: Credit Recovery courses are credit bearing courses with specific content requirements defined by Next Generation Sunshine State Standards and/or Florida Standards. Students enrolled in a Credit Recovery course must have previously attempted the corresponding course (and/or End-of-Course assessment) since the course requirements for the Credit Recovery course are exactly the same as the previously attempted corresponding course. For example, Geometry (1206310) and Geometry for Credit Recovery (1206315) have identical content requirements. It is important to note that Credit Recovery courses are not bound by Section 1003.436(1)(a), Florida Statutes, requiring a minimum of 135 hours of bona fide instruction (120 hours in a school/district implementing block scheduling) in a designed course of study that contains student performance standards, since the students have previously attempted successful completion of the corresponding course. Additionally, Credit Recovery courses should ONLY be used for credit recovery, grade forgiveness, or remediation for students needing to prepare for an End-of-Course assessment retake.

Instructional Practices 
Teaching from a range of complex text is optimized when teachers in all subject areas implement the following strategies on a routine basis: 

  1. Ensuring wide reading from complex text that varies in length.
  2. Making close reading and rereading of texts central to lessons.
  3. Emphasizing text-specific complex questions, and cognitively complex tasks, reinforce focus on the text and cultivate independence.
  4. Emphasizing students supporting answers based upon evidence from the text.
  5. Providing extensive research and writing opportunities (claims and evidence).


Science and Engineering Practices
 (NRC Framework for K-12 Science Education, 2010)

  • Asking questions (for science) and defining problems (for engineering).
  • Developing and using models.
  • Planning and carrying out investigations.
  • Analyzing and interpreting data.
  • Using mathematics, information and computer technology, and computational thinking.
  • Constructing explanations (for science) and designing solutions (for engineering).
  • Engaging in argument from evidence.
  • Obtaining, evaluating, and communicating information.

Literacy Standards in Science
Secondary science courses include reading standards for literacy in science and technical subjects 6-12 and writing standards for literacy in history/social studies, science, and technical subjects 6-12. The courses also include speaking and listening standards. For a complete list of standards required for this course click on the blue tile labeled course standards. You may also download the complete course including all required standards and notes sections using the export function located at the top of this page.

English Language Development ELD Standards Special Notes Section:
Teachers are required to provide listening, speaking, reading and writing instruction that allows English language learners (ELL) to communicate information, ideas and concepts for academic success in the content area of Science. For the given level of English language proficiency and with visual, graphic, or interactive support, students will interact with grade level words, expressions, sentences and discourse to process or produce language necessary for academic success The ELD standard should specify a relevant content area concept or topic of study chosen by curriculum developers and teachers which maximizes an ELL's need for communication and social skills. To access an ELL supporting document which delineates performance definitions and descriptors, please click on the following link: https://cpalmsmediaprod.blob.core.windows.net/uploads/docs/standards/eld/sc.pdf


General Information

Course Number: 2002405 Course Path: Section: Grades PreK to 12 Education Courses > Grade Group: Grades 9 to 12 and Adult Education Courses > Subject: Science > SubSubject: Integrated Sciences >
Abbreviated Title: INTEG SCI 1 CR
Number of Credits: One (1) credit
Course Attributes:
  • Highly Qualified Teacher (HQT) Required
  • Florida Standards Course
Course Type: Credit Recovery Course Level: 2
Course Status: Terminated
Grade Level(s): 9,10,11,12



Educator Certifications

Earth/Space Science (Grades 6-12)
Physics (Grades 6-12)
Science (Secondary Grades 7-12)
Biology (Grades 6-12)
Middle Grades General Science (Middle Grades 5-9)
Chemistry (Grades 6-12)


There are more than 1243 related instructional/educational resources available for this on CPALMS. Click on the following link to access them: https://www.cpalms.org/PreviewCourse/Preview/13143