Standard #: SC.8.N.1.1


This document was generated on CPALMS - www.cpalms.org



Define a problem from the eighth grade curriculum using appropriate reference materials to support scientific understanding, plan and carry out scientific investigations of various types, such as systematic observations or experiments, identify variables, collect and organize data, interpret data in charts, tables, and graphics, analyze information, make predictions, and defend conclusions.


General Information

Subject Area: Science
Grade: 8
Body of Knowledge: Nature of Science
Big Idea: The Practice of Science -

A: Scientific inquiry is a multifaceted activity; The processes of science include the formulation of scientifically investigable questions, construction of investigations into those questions, the collection of appropriate data, the evaluation of the meaning of those data, and the communication of this evaluation.

B: The processes of science frequently do not correspond to the traditional portrayal of "the scientific method."

C: Scientific argumentation is a necessary part of scientific inquiry and plays an important role in the generation and validation of scientific knowledge.

D: Scientific knowledge is based on observation and inference; it is important to recognize that these are very different things. Not only does science require creativity in its methods and processes, but also in its questions and explanations.

Date Adopted or Revised: 02/08
Date of Last Rating: 05/08
Status: State Board Approved
Assessed: Yes

Related Courses

Course Number1111 Course Title222
2002100: M/J Comprehensive Science 3 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))
2002110: M/J Comprehensive Science 3, Advanced (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))
2001010: M/J Earth/Space Science (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))
2001020: M/J Earth/Space Science, Advanced (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))
2000010: M/J Life Science (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))
2000020: M/J Life Science, Advanced (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))
2003010: M/J Physical Science (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))
2003020: M/J Physical Science, Advanced (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))
1700020: M/J Research 3 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))
7820017: Access M/J Comprehensive Science 3 (Specifically in versions: 2014 - 2015, 2015 - 2018, 2018 - 2023, 2023 and beyond (current))
2002085: M/J Comprehensive Science 2 Accelerated Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 and beyond (current))
2001105: M/J Coastal Science 2 (Specifically in versions: 2022 and beyond (current))


Related Access Points

Access Point Number Access Point Title
SC.8.N.1.In.1 Identify a problem from the eighth grade curriculum, use reference materials to gather information, carry out an experiment, collect and record data, and report results.
SC.8.N.1.Su.1 Recognize a problem from the eighth grade curriculum, use materials to gather information, conduct a simple experiment, and record and share results.
SC.8.N.1.Pa.1 Recognize a problem related to the eighth grade curriculum, observe and explore objects and activities, and recognize a solution.


Related Resources

Educational Software / Tool

Name Description
Density: Sea Water Mixing & Sinking This is an excellent resource for teachers and students that provides student sheets, data graphs, vocabulary, and teacher notes as well as Big Ideas, Essential Questions, Data Tables, Formative Assessment questions - extremely teacher friendly who need assistance on this Big Idea and Concept. (The Preconceptions were helpful to my students.)

Lesson Plans

Name Description
Just Right Goldilocks’ Café: Temperature & Turbidity

This is lesson 3 of 3 in the Goldilocks’ Café Just Right unit. This lesson focuses on systematic investigation on getting a cup of coffee to be the “just right” temperature and turbidity level. Students will use both the temperature probe and turbidity sensor and code using ScratchX during their investigation.

Just Right Goldilocks’ Café: Turbidity

This is lesson 2 of 3 in the Just Right Goldilocks’ Café unit. This lesson focuses on systematic investigation on getting a cup of coffee to be the “just right” level of turbidity. Students will use turbidity sensors and code using ScratchX during their investigation.

Just Right Goldilocks’ Café: Temperature

This is lesson 1 of 3 in the Just Right Goldilocks’ Café unit. This lesson focuses on systematic investigation on getting a cup of coffee to be the “just right” temperature. Students will use temperature probes and code using ScratchX during their investigation.

 

Bubbles and Colors and Smells...Oh My!

In this lesson, students will conduct observational and experimental investigations to differentiate between physical changes and chemical change. Students will make and record observations as well as identify experimental variables. Students will conduct several investigations to help them to understand the differences between chemical and physical changes. Students will record investigative observations and use their observations to provide evidence that a physical or a chemical change has occurred.

Drink Mix Mix-Up

In this inquiry activity, students will identify unknown powdered drink mixes. They will use their knowledge of various physical properties to design tests for the unknown drink mixes and then compare them to the known. Students will use their own generated data as evidence to form a conclusion and support their findings. 

Knight Shipping, Inc.

In this design challenge students will take what they have learned about calculating the volumes and densities of cones, cylinders, and spheres, to decide which shape would make the best shipping container. Students will calculate the volumes and densities to help select the best design and then test them to move at least 3 containers of the chosen shape across the classroom. Students will fill the shapes with marshmallows to visually confirm which shape would hold more.

Maintaining Mass

The student will demonstrate that mass is conserved when substances undergo chemical and/or physical changes through experimentation and evaluation of experimentation procedures. Students will be able to analyze the demonstration and provide evidence for or against the law of conservation of mass.Students will first view and then hypothesize, based on their knowledge of the law of conservation of mass, why a teacher demonstration does not seem to prove the law. Students will then explore a modified version of the experiment to determine ways that the teacher demonstration should have been changed to show conservation of mass effectively.

Measurement and Data Collection

In this interdisciplinary lesson, students will practice the skill of data collection with a variety of tools and by statistically analyzing the class data sets will begin to understand that error is inherent in all data.

This lesson uses the Hip Sciences Sensor Wand and Temperature Probe. Please refer to the corresponding Hip Science Sensor Guide(s) for information on using the sensor.

Research Project: Sensing Nature

In this week-long, open-ended activity, students will observe their local environment, devise and pose a testable research question, conduct observations using sensors, and use mathematics skills for quantitative analysis and plotting. To communicate results, students will summarize their findings on a custom poster that explains their work.

Measurement Data Error

In this interdisciplinary lesson, students will practice the skill of data collection with a variety of tools and by statistically analyzing the class data sets will begin to understand that error is inherent in all data.

Measurement and Data Collection

In this interdisciplinary lesson, students will practice the skill of data collection with a variety of tools and by statistically analyzing the class data sets will begin to understand that error is inherent in all data.

This lesson uses the Hip Sciences Sensor Wand and Temperature Probe. Please refer to the corresponding Hip Science Sensor Guide(s) for information on using the sensor.

Overloading Circuits

In this design challenge, students will explore electrical circuits. Students will use their skills in science, math, and technology to determine how many light bulbs can be powered off of one circuit. Students will build circuits, measure luminosity, graph data, analyze the data and then report their findings to Kiser construction.

Shipwrecked Pirates

In this lesson, students will take the role of shipwrecked pirates. Working in groups, they will have to use the concepts of force, speed, scatter plots, and literal equations to come up with a way of getting one student to a nearby sister island so that they will both have enough food to survive.

Expanding the Universe

Students will draw three dots on an unblown balloon to represent three different galaxies. They will measure the distance between these "galaxies" and then blow up the balloon in three stages, measuring the distance between the "galaxies" at each stage.

Rocks Makin' Rocks: Rock Cycle Simulation

Students will participate in a simulation model of the rock cycle. Collecting data by throwing die, students will develop an understanding of the movement of atoms and rock particles through the rock cycle.

STEM Catapult Challenge

In this lesson, students will design catapults for offense that will be able to shoot down as many objects as possible in a 20-object tower. They will also design a 20-object tower for defense that is least likely to be knocked down by their opponents catapults. As they complete their investigation, they will be designing and implementing two experiments in one. They will identify a problem, make a prediction, collect and analyze data, and draw conclusions. By the end of the lesson, they should be able to differentiate repetition from replication as well.

What if ….you never saw another shell?

This lesson connects the Carbon Cycle with the elevation of global temperatures causing dissolution of carbon-containing substances and rise in acidity. Students conduct a simulation experiment and model carbon loss due to temperature changes lowering pH.

Starry Science

In this engaging lesson, students will investigate and explore the effects of temperature, size, and magnitude on the luminosity and life span of stars using glow sticks. This lesson includes a guided inquiry lab and website exploration.

Choosing the Best Magnet Program for a High School

In this MEA, students will try to decide which magnet program they would choose for a high school.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Discovering Kepler's Law for the Periods of Planets

Students listen to a video that describes Kepler's determination that planetary orbits are elliptical and then will use data for the solar distance and periods of several of the planets in the solar system, then investigate several hypotheses to determine which is supported by the data.

NASA Beginning Engineering, Science and Technology The NASA BEST Activities Guides is designed to teach students the Engineering Design
Process. These lessons are created to accommodate grades 6-8.

All follow the same set of activities and teach students about humans' endeavor to return to the
Moon. Specifically, how we investigate the Moon remotely, the modes of transportation to and on
the Moon, and how humans will live and work on the Moon.
Scientific calculations from a distant planet

Students will act as mathematicians and scientists as they use models, observations and space science concepts to perform calculations and draw inferences regarding a fictional solar system with three planets in circular orbits around a sun. Among the calculations are estimates of the size of the home planet (using a method more than 2000 years old) and the relative distances of the planets from their sun.

Measurement in the Science Classroom

Students will practice measuring length, mass, volume in a variety of ways using a variety of tools including triple beam balances and graduated cylinders. Density will then be calculated.

Force (Weight versus Mass): Newton's 2nd Law

Students will examine the relationships between mass, force and acceleration, applying Newton's 2nd Law.

This is part 2 of a two-part lab. It is recommended that the teacher cover the first lesson (, ID 51003) prior to completing this lesson.

Dissolving Gobstoppers Using Controls and Variables Students will conduct a simple laboratory experience that practices the proper use of controls and variables. Students will conduct a controlled experiment in their laboratory groups.
Ancient Archery: Scientific Method and Engineering

Students must assist an archaeological research team to determine which material ancient archers likely used to string their bows. Students must design an experiment to test various materials for power, precision, and durability. After the data is collected, they must develop a system to determine which material would have been most desirable for the ancient archers.

This MEA is a multifaceted lesson designed to address both the processes of discovery through scientific investigation and problem-solving through engineering. The full-scale MEA involves the development of a complete experiment and a proper lab report and then an application of the collected data to address the problem-solving requirement of the MEA.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Elements of Experimental Design Understanding the process of experimental design. It is a process that is structured in order to control variables, maintain consistency, incorporates a hypothesis or a prediction and is testable. The design of the experiment specifies that the experiment must be repeated 3-5 times in order to validate your findings.
Mystery Powder Investigation

Students will use their skills as scientists to identify a mystery white powder. This lesson is a hands-on, engaging way to build students' understanding of physical and chemical properties of several common compounds.

Original Student Tutorial

Name Description
Stop the Zombie Virus by Interpreting Graphs

Help scientists find the most effective vaccine for Zombie Virus vaccine by effectively analyzing and summarizing experimental data. In this interactive tutorial, you'll write a scientific question, a claim, supporting evidence and an explanation of what happened during the experiment.

Perspectives Video: Teaching Idea

Name Description
Observing Fossils in the Classroom

Dig into this idea on teaching fossils and age.

Download the CPALMS Perspectives video student note taking guide.

Teaching Idea

Name Description
Pump Up the Volume

This activity is a statistical analysis of recorded measurements of a single value - in this case, a partially filled graduated cylinder.

Text Resource

Name Description
Solving Bad Breath One Walnut at a Time

This informational text resource is intended to support reading in the content area. The science fair project of two junior scientists in Nigeria may hold the key to ending "morning breath." Through experimentation, the two teenage girls determined that African walnuts were able to kill bacteria that cause bad breath. Their project was presented at the Intel International Science and Engineering Fair.

Unit/Lesson Sequences

Name Description
Middle School Chemistry Unit | Chapter 3 | Density Students experiment with objects that have the same volume but different mass and other objects that have the same mass but different volume to develop a meaning of density. Students also experiment with density in the context of sinking and floating and look at substances on the molecular level to discover why one substance is more or less dense than another.
Middle School Chemistry Unit | Chapter 1 | Matter—Solids, Liquids, and Gases Students are introduced to the idea that matter is composed of atoms and molecules that are attracted to each other and in constant motion. Students explore the attractions and motion of atoms and molecules as they experiment with and observe the heating and cooling of a solid, liquid, and gas.
Chemical Change Investigations | Inquiry in Action In this series of 10 investigations, students gain experience with the evidence of chemical change - production of a gas, change in temperature, color change, and formation of a precipitate. Students begin by observing that similar-looking powders can be differentiated by the way they react chemically with certain test liquids. Students then use their chemical tests and observations to identify an unknown powder and, in a follow-up activity, to identify the active ingredients in baking powder. Students continue to explore chemical change by using a thermometer to observe that temperature either increases or decreases during chemical reactions. Then they control these reactions by adjusting the amount of reactants. In another set of activities, students use the color changes of red cabbage indicator to classify substances as acids or bases, neutralize solutions, and compare the relative acidity of two different solutions. Students conclude the investigation by comparing a precipitate to one of the reactants that formed it. Students see that a new substance was created during the chemical reaction. Information and questions about photosynthesis and cellular respiration are included as examples of chemical changes on pages 316-318 of this resource.

Worksheets

Name Description
Position-Justification-Evidence Framework

This resource provides students with a framework to form an academic argument. Students must provide a justification for their position statement and support it with evidence.

Point-Counterpoint Framework

This resource provides students with a framework to examine multiple sides of an argument before taking a position. It is useful in helping students examine opposing views and strengthen their argument by anticipating the opposition's main points.

Yes-No-Because Framework

This resource provides students with a framework to take and support their position on an open-ended or yes/no question. Its simplicity is especially useful for students with little to no experience forming an academic or scientific argument.

Student Resources

Original Student Tutorial

Name Description
Stop the Zombie Virus by Interpreting Graphs:

Help scientists find the most effective vaccine for Zombie Virus vaccine by effectively analyzing and summarizing experimental data. In this interactive tutorial, you'll write a scientific question, a claim, supporting evidence and an explanation of what happened during the experiment.



Parent Resources

Perspectives Video: Teaching Idea

Name Description
Observing Fossils in the Classroom:

Dig into this idea on teaching fossils and age.

Download the CPALMS Perspectives video student note taking guide.



Printed On:4/23/2024 2:59:36 PM
Print Page | Close this window