Add two whole numbers with sums up to 100 with procedural reliability. Subtract a whole number from a whole number, each no larger than 100, with procedural reliability.
The sum 41+23 can be found by using a number line and “jumping up” by two tens and then by three ones to “land” at 64.
Instruction focuses on helping a student choose a method they can use reliably.
Name |
Description |
Trip to Statue of Liberty | Students will discuss facts about the Statue of Liberty and take a virtual tour. Students will use tables of ferry ticket and food prices to solve one and two-step word problems involving money. |
COUNTING ON RESPONSIBLE CITIZENSHIP (Lesson 3 of 3) | In this math/civics lesson integrated lesson students will create a pictograph based on data collected from 3 short stories realted to ressponisble and irrsponsible citizenship.
|
Let's Play! | In this Model Eliciting Activity, MEA, students must decide the best way to spend the money earned in a fundraiser to buy new playground equipment.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx |
Fundraising on a Budget | This Model-Eliciting Activity (MEA) is designed for a second grade level. Students will be working in small groups to figure out what companies to hire for the art gallery to have a successful charity event. The students will be evaluating criteria such as bands for the event, caterers, and artists. Students will need to add money to stay within a budget. They will write their procedure for making their selections.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom. |
Pirate Party! - Let's Make a Ten | This lesson teaches students how to apply the "make-a-ten" strategy to addition problems involving two-digit addends. |
Roll and Add Two Digit Numbers | In this lesson students will use two dice to roll and add two-digit numbers. Students will also use their numbers to create and solve one-step addition word problems. |
Disappearing Tens | Students learn to subtract multiples of ten from multiples of ten by playing a game. |
Water Parks Galore! | In this Model Eliciting Activity, MEA, students will devise a procedure, and justify it, in order to determine the best features of a water park. Students will use problem-solving skills and data sets presented in a bar graph and table. In a “twist,” students will be given new information and asked to determine whether their procedure still works. Students will create a bar graph representing the new data.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx |
Class Pets | In this Model Eliciting Activity, MEA, students will devise a plan for ranking, and justify it, in order to choose the best class pet. Students will use problem-solving skills, interpret data presented in tables, add two-digit numbers, compare two and three-digit numbers, and create bar graphs.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx |
Cookie Contest | In this Model Eliciting Activity, MEA, students are asked to decide which factors are important in choosing the best cookie in a cookie contest. Students will take on the role of cookie critics to provide feedback to a teacher whose grade level is deciding which cookie to use for a fundraiser. They will rank order their choices from the best to worst cookie. Students will provide a detailed written explanation for how they decided to rank factors and their solution. They will show their work while adding up to 4 two-digit numbers to calculate the total number of votes.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx |
Cellular Satisfaction | In this Model Eliciting Activity, MEA, a client is searching for the best cell phone carrier. Students will determine a procedure for ranking the companies based on votes for the favorite company and fees. The data is given in a scaled bar graph and a table. In a “twist,” the client provides more data, presented in a scaled pictograph, for the students to consider.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx |
Best Classroom Pet | In this Model Eliciting Activity, MEA, the students will work in teams to use data to determine which classroom pet teachers should get for their classrooms based on several characteristics.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx |
Birthday Parties 'R' Us | Students will determine which pizza place should be used to cater parties at the Birthday Parties 'R' Us facility given a set of data. They will create a procedure for determining the best pizza place, write an explanation about their procedure, and present their recommendations to the class. Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom. |
Rip and Regroup to Add | Students will learn how to transpose a horizontal addition equation with two-digit addends using a specialized vertical place value work mat. Students will "rip and regroup" to help understand how to regroup ten ones as one ten and move toward using a standard algorithm for addition. |
Adding and Subtracting on a Hundred Chart | This lesson is not an introduction to adding and subtracting on the hundreds chart, but rather a practice of strategies to help develop procedural reliability. Students will use the hundred chart to add two two-digit numbers and subtract two-digit numbers from two-digit numbers to reveal hidden designs on the charts. Students will be encouraged to use place value to decompose the two-digit number that is being added or subtracted into tens and ones and then use the structure of the hundred chart to efficiently add the tens by moving up or down full rows before counting on or counting back the number of remaining ones. |
Alternative Addition Strategies | This lesson explores various addition strategies of two-digit numbers. The lesson focus is to encourage students to find and develop a reliable method they can use to add within 100. The lesson includes making an Addition Strategies Mini Booklet, which students can keep and use as a reference tool. |
How Many Inches, Feet, and Yards? | Students will measure the length of given objects using various measuring tools. The students will record their measurements using different units including inches, feet, and yards to the nearest whole unit. Students will also estimate and measure the lengths of objects, then compare their estimations to their measurements to find the difference.
|
Is it "Most Magically Magical"? | This lesson is intended to be a cooperative inquiry-based activity used close to the end of second grade. The students will be actively engaged in adding and subtracting numbers within 100 while having fun completing Magic Squares. |
Success with Story Problems - Addition/Subtraction | In this lesson, students will solve one and two-step real-world problems using a variety of problem-solving strategies. |
Sweet Addition and Subtraction | This lesson is a continuation of the "Sweet Values" and "Sweet Number Places" lessons also found on CPALMS. It is a different way of teaching addition and subtraction, by continuing a story that started with place value. In this lesson, students will learn to use the place value knowledge gained to solve word problems. |