Standard 1 : Comprehension and Collaboration (Archived)



This document was generated on CPALMS - www.cpalms.org


General Information

Number: LAFS.4.SL.1
Title: Comprehension and Collaboration
Type: Cluster
Subject: English Language Arts - Archived
Grade: 4
Strand: Standards for Speaking and Listening

Related Standards

This cluster includes the following benchmarks
Code Description
LAFS.4.SL.1.1: Engage effectively in a range of collaborative discussions (one-on-one, in groups, and teacher-led) with diverse partners on grade 4 topics and texts, building on others’ ideas and expressing their own clearly.
  1. Come to discussions prepared, having read or studied required material; explicitly draw on that preparation and other information known about the topic to explore ideas under discussion.
  2. Follow agreed-upon rules for discussions and carry out assigned roles.
  3. Pose and respond to specific questions to clarify or follow up on information, and make comments that contribute to the discussion and link to the remarks of others.
  4. Review the key ideas expressed and explain their own ideas and understanding in light of the discussion.
LAFS.4.SL.1.2: Paraphrase portions of a text read aloud or information presented in diverse media and formats, including visually, quantitatively, and orally.
LAFS.4.SL.1.3: Identify the reasons and evidence a speaker provides to support particular points.


Related Access Points

This cluster includes the following access points.

Access Points

Access Point Number Access Point Title
LAFS.4.SL.1.AP.1a: Provide evidence of being prepared for discussions on a topic or text through appropriate statements made during discussion.
LAFS.4.SL.1.AP.1b: Ask questions to check understanding of information presented in collaborative discussions.
LAFS.4.SL.1.AP.1c: Make appropriate comments that contribute to a collaborative discussion.
LAFS.4.SL.1.AP.1d: Review the key ideas expressed within a collaborative discussion.
LAFS.4.SL.1.AP.2a: Paraphrase portions of a text read aloud or information presented in diverse media and formats, including visually, quantitatively and orally.
LAFS.4.SL.1.AP.3a: Identify the reasons and evidence a speaker provides to support particular points.


Related Resources

Vetted resources educators can use to teach the concepts and skills in this topic.

Lesson Plans

Name Description
Railroads Change Florida: Zora Neale Hurston and the Railroad Track Lining Chants:

Zora Neale Hurston is most often remembered as a gifted novelist with a knack for capturing the essence of the lives of rural Southerners, especially in Florida. She was also, however, a folklorist who helped the Federal Writers’ Project document the lives and traditions of African-Americans during the Great Depression. Hurston’s work has been instrumental in writing the history of African-American individuals and communities. In this lesson students will listen to a track lining song that was collected by Zora Neale Hurston to write brief journal responses to the audio recording.

Net Making and Net Fishing in Florida: Interview with Billy Burbank III, Net Maker:

In the interview, longtime net maker and Fernandina resident Billy Burbank III discusses the history and practices of the net making trade. Conducted by folklorist Peggy Bulger in July 1980, the interview begins with Burbank describing how his grandfather began the family business, Burbank Trawl Makers Inc., in 1915.

In this lesson, students will listen to the interview with Billy Burbank III. As they listen, they will complete a Sound Recording Analysis Worksheet from the National Archives and Records Administration. They will then discuss their findings.

Paddleboard Conundrum MEA:

This activity allows students to compare and contrast paddleboards based on their physical features such as length, width, weight, etc. Students will determine which board is best for beginning paddlers using deductive reasoning and key details from the reading passages.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Planet Hoppers, Inc: A Space Suit Design Company:

Students are asked to evaluate several space suit designs and select the best design based on given data. Students work in collaborative groups to develop a procedure for selecting the best design and share their ideas with the rest of the class. A twist is introduced and the groups are challenged to test the validity of their procedure.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Slither Not in the Everglades! Python MEA:

This MEA will ask students to work in teams to help their client, The Florida Fish and Wildlife Conservation Commission, to decide which Burmese python traps manufacturing company to buy traps from. The traps will be placed along the Florida Keys and the Everglades to help prevent the growth of invasive Burmese Python population. The students will implement their knowledge of how plants, animals, and humans impact the environment, use mathematical and analytical problem-solving strategies, and be able report their finding in an organized, descriptive manner.

Best Stuffy Ever:

In this lesson, the students will learn about comparing the volume and the capacity of an item such as a bigger than normal stuffy. Each stuffy will be stuffed with the same type of object (tennis balls) to see which holds more. Through various readings, discussions, and activities, the students will determine which stuffy can hold the most inside. They will do this by analyzing a set of data with a set of criteria given to them by a client.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Best Graduation Venue:

This MEA asks fourth grade students to collaborate with their classmates to solve a problem. They have to use their previous knowledge of the area formula and apply it to a real world problem using a given data set. They will also be asked to reevaluate their solutions when additional data is added.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

The Dock at Lake Wonder MEA:

The Lake Wonder Summer Camp needs to replace an old worn out dock before summer! In this MEA, Students will be asked to rank and choose from the potential docks based on the data given. In the process, students will need to find area and perimeter as part of their criteria for ranking. The data provided is: dock dimensions, price per square foot for materials, warranty, and material quality. In the twist, students will be asked to add in a safety bumper around the dock (perimeter). They must decide how to change their procedure with the new information.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Mastering Minerals!:

This MEA requires Students to review data and rank minerals from best to worst in terms of mineral properties, to help a mineral jeweler decide on the best mineral to use to make a necklace. Students will consider hardness, luster, color, cleavage and safety by analyzing the given charts which include these data by mineral. Students will work as a group and create a model for ranking the minerals.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Fertilizers in Florida:

Growing Green, Inc. is planning to expand their business into Florida. The client has specific criteria for selecting a good location to set up their new fertilizer manufacturing plant. This project will familiarize students with some of Florida's natural resources (with a great emphasis on phosphate) and will present students with opportunities to interpret different types of maps.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Take Time to Tile - MEA:

In this MEA, students will work in collaborative groups to solve multistep problems with whole numbers and decimals by using different mathematical operations such as addition, subtraction, multiplication and division. The students will be asked to assist a property owner, who is planning to retile his kitchen and family room floors, with purchasing the best quality tiles for the least amount of money. Students will need to read a data table, rank the tile companies from best to worst, calculate the amount of tiles needed according to the area, and determine the total cost to retile the kitchen and family room. A twist is added to the problem when one of the tile companies goes out of business, but two new companies are added. An additional twist will be that the homeowner has decided to tile his bathroom as well. The students will need to reevaluate the tile companies as well as recalculate the total costs to include tile for the bathroom.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Park Planning:

Students are asked to plan a playground for a new park within a given budget and area limit. They will analyze the best use of playground equipment using a data table of area requirements and cost. Students will convert units within a single measurement system, calculate the area of a rectangle, and perform addition/subtraction calculations involving money using decimal notation.

Dance by the Light of the Moon:

Professional Partiers, Inc. is having a difficult time setting a date for a client's Halloween party. The client has specific criteria they like would to have included in deciding on a good date. This project will familiarize students with the phases of the moon. It allows students an opportunity to interpret data from charts and collaborate with one another to provide a thoughtful written response for the company.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Aesop's Fable "The Lost Wig":

This lesson on Aesop's Fable "The Lost Wig" will provide students the opportunity to share and discuss their ideas of the fable’s theme. Students will work together in cooperative pairs to determine the theme "The Lost Wig." They will also have the opportunity to add on to the ending of "The Lost Wig" to enhance the theme.

Close Reading of Bud, Not Buddy by Christopher Paul Curtis:

In this lesson, students will work with their teacher and classmates to practice a close reading of the book Bud,Not Buddy by Christopher Paul Curtis. Students will encounter multiple reading opportunities and be asked to analyze text, identify story elements, examine characters' actions and motivations, and finally, make inferences after closely reading the text.

Birthday Balloon Planner:

Students will develop a model for choosing a balloon party planner and rank them from best to worst.

The students will be able to use prior knowledge of addition of multi-digit whole numbers, multiplication and division facts and concepts, math calculations with money and time, understanding fractions, and problem solving skills to solve a non-routine MEA (Model Eliciting Activity) that requires real-world application of mathematical skills.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Cupcake Shop Creator:

Students will become architects to determine the best layout for a new cupcake shop coming to town. Students will use area and perimeter to assist in presenting the best layout of the store. The factors that the students will need to consider are: kitchen space, front counter space, a bathroom, and a wall to display and sell merchandise.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Turn Up the Heat!:

In this 4th grade MEA, students will work in groups to develop a procedure to rank which company would offer the best pot holders. Students will consider factors such materials, heat resistance, durability, Physical properties ( shape and color) and appearance to help pick the best option. Students will apply their knowledge of how heat transfers and understanding of materials that don't conduct heat energy to help evaluate the companies.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Help Me Build a Roller Coaster:

Students will evaluate different factors for building the right roller coaster.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

Cell Phone Inquiry:

Students will determine what cell phone would be the best phone for their teacher to purchase for science class. Factors to consider are price, touch screen, camera, voice command, weight and display size. Students will need to compare decimals to determine how to order and rank the phone brands.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Adventure Falls Bus Purchase:

The school district needs to purchase new buses to transport students. Students will be asked to rank the bus choices based on the data provided. The data provided is: price, year, new/used, and capacity (how many students the buses hold). In the twist, students will be given safety information and must decide how to change their procedure with the new information.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Tennis Lessons:

This MEA asks students to take on the job of a tennis pro and decide which factors are most important in choosing a facility to take tennis lessons. Students will perform math calculations, create a two-column table for hours and minutes, develop a procedure to rank facilities, and provide written feedback through letters to a parent whose child needs group tennis lessons and writes letters to ask for advice. They will rank their choices from "best to worst" tennis lesson facilities. Students will provide a detailed written explanation for how they decided to rank factors and their solution for rating tennis lesson facilities.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Walk This Way:

Students will be asked to rank the different floor tiles for the playrooms in activity centers throughout community parks. They will need to take certain factors into consideration when making their rankings. They will also need to calculate the costs of installing the floor tiles using the given measurement of the playroom and the floor tiles. The "twist" will be that the client now needs to include a storage room for some of the playroom's equipment. They will need to decide if to use the same floor tile or different from the playroom and the additional cost of the storage closet. After, they will add the total costs of the playroom and the storage closet. They will report their findings and reasons by writing letters to the client.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Best Baseball Player?:

In this 4th grade MEA, students will use data to compare which baseball player they think is the best hitter using actual stats.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Celebrity Floor Plan Frenzy:

Students will help an architect find the area of each room in a celebrity home and then determine the best location to build the home based on qualitative data about the locations.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

Pickle Pick:

This Model Eliciting Activity (MEA) asks students to develop a procedure to select a pickle brand for a sandwich shop. Students will need to consider appearance, texture, price, flavor, length of shelf life, and estimating shipping costs. In the second portion of the problem statement, the students will need to trade off what they have previously considered and give more worth to the estimated shipping costs, while adding three more brands for consideration. The students will complete a culminating activity of making a commercial to advertise their selected brand. Student will need to work together and use the standard conventions of writing to write and perform their commercial for the other groups.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

Fish Ahoy Fish:

Students will work in groups to assist a client in purchasing different fish for a fish pond. From a data table, they will need to decide which type of fish and how many fish to purchase according to the size of the each pond. After, they will need to revisit a revised data table to make different selection of fish and calculate costs for the purchase of the fish.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

BUGS...Food Of The Future?:

In this 4th grade MEA, students will work in groups to develop a procedure to rank which insect would be the best bug to farm for human consumption in the USA. Students will consider factors such as nutritional value, length of insect life cycle, stage of life cycle the insect can be served, notes from chefs, customer tasting notes, level of difficulty to farm, and price. This MEA allows students to apply scientific content, metamorphosis, in a real world application, while developing high-level problem solving skills.

Wind at Work: Wind as a Renewable Resource:

This is an Engineering Design Project that follows the CIS: Wind at Work Lesson. This is lesson two of two in the Unit and builds upon the understanding of wind as a natural resource. It is applying content knowledge and is not intended as an initial introduction to the benchmarks.

Patrotic Pledgers:

This lesson has students defining a selection of words from the Pledge of Allegiance. After defining these words, students will identify synonyms for the selected words and rewrite the pledge in their own words. Students will then orally present their rewritten pledge to the class.

Dissect It!:

After dissecting a flower(s), the students will be able to identify the parts necessary for pollination, or reproduction of flowering plants. They will also make comparisons and find patterns in nature, leading them to the understanding of the processes of sexual reproduction in flowering plants, including pollination and fertilization (seed production).

Planning Creative Drama:

This lesson introduces students to a creative and engaging way to understand story structure and elements of plot by allowing the students to write and act out a play. Students make selections from a provided list featuring various settings, characters, and conflicts and build their creative plays using a ready-made story feature template.

Did It Change?:

Through demonstrations and lab/investigate rotations, students will explore physical and chemical changes.

Rollercoaster Investigations:

This activity will allow students to explore the motion and speed of an object. While constructing a rollercoaster and using the Scientific Method, students will create their own question and then investigate it, finding out whether the speed of an object is affected by the track it follows.

Save Our Sand--An Engineer/Design Challenge:

This Engineering Design Challenge is intended to help students apply the concepts of weathering and erosion from SC.4.E.6.4 as they build devices to stop beach erosion. It is not intended as an initial introduction to this benchmark.

Wind Sculptures - An Engineering Design Challenge:

This Engineering Design Challenge is intended to help students apply the concept of how moving air is a source of energy and can be used to move things. It is not intended as an initial introduction to this benchmark.

Banana County Public School-Painters MEA:

This Model Eliciting Activity (MEA) is written at a 4th grade level.

This activity allows students to think critically using information provided. Students will write a procedure on how they determined which painting company would be suitable for the client.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Cube Cooler—An Engineering Design Challenge:

This Engineering Design Challenge is intended to help students apply the concepts of heat insulators from SC.4.P.11.2 as they build cube-coolers to slow the melting rate of ice. It is not intended as an initial introduction to this benchmark.

Sunshine Power Company MEA:

This Model Eliciting Activity (MEA) is written at a 4th grade level. In this open-ended problem, students must consider how to rank wind companies based on factors like windiness, noise levels, and power output. In teams, students determine their procedures and write letters back to the client.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Florida's First Engineers-An Engineering Design Challenge:

This Engineering Design Challenge is intended to introduce students to Native Floridians, their basic needs, and the challenges they faced in Florida's environment. Students will be designing and constructing a tool out of Florida native materials (items found in Florida's environment) that could meet one of the basic needs of humans. They will be discussing whether Native Floridians were engineers based on their ability to construct tools and shelters out of native materials in order to solve problems.

Cemented Together:

In this activity the students will create their own sedimentary rock using glue and various pieces of sediments found throughout the school yard. The students will create a model of a sedimentary rock and describe how they would identify a sedimentary rock in the real world.

Honey Bee Human--an Engineering Design Challenge:

This Engineering Design Challenge is intended to help students apply the concepts of pollination from SC.4.L.16.1 as they design an apparatus that will pollinate a field. It is not intended as an initial introduction to this benchmark.

In this Engineering Design Challenge, students will make a 2-dimensional model (a graphic illustration) rather than build a prototype.

Close Reading Exemplar: "The Making of a Scientist":

The goal of this two to three day exemplar is to give students the opportunity to use the reading and writing habits they've been practicing on a regular basis to absorb deep lessons from Richard Feynman's recollections of interactions with his father. By reading and rereading the passage closely, and focusing their reading through a series of questions and discussion about the text, students will identify how and why Feynman started to look at the world through the eyes of a scientist. When combined with writing about the passage, students will discover how much they can learn from a memoir.

Discovering Florida's Past with A Land Remembered (Lesson 2 of 2):

Students will go on adventures with the MacIvey family as they work cooperatively to summarize a text.

Lotsa Lotion Lab's Sunscreens:

Lotsa Lotion Labs requests the help of your team to rank a group of sunscreens, explain the process and justify how you chose which is 'best.' An additional hands-on lesson investigating solar energy and sunscreens is included as an extension activity.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

Recycle This!:

Students will learn about recycling renewable and nonrenewable resources while completing a model eliciting activity in which they help Sunshine School District to decide which material to start their recycling program with.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

To Flow or Blow: Which One is Best for Here?:

In this lesson, 4th grade students will use web-based articles and maps to look at current and potential air (wind) and water (hydro)power plants for their, or a teacher-given, local area. Students will present an argument for which type of renewable energy plant they believe would be best citing evidence from text(s) and/or map(s). Students may work and/or write in groups or individually. Access points are included for this lesson.

Teaching Ideas

Name Description
Sea Turtle Summit-SeaWorld Classroom Activity: In this activity, the students will take a hypothetical environmental situation and research appropriate literature to determine factual information and logicially argue a particular point of view.
Wildlife Reserve-SeaWorld Classroom Activity: In this activity, the students will design a protected environment for an endangered animal that encourages the animal's natural behaviors and meets its physical requirements. Students will explain to their classmates why the protected environment is essential for the endangered animal.

Unit/Lesson Sequence

Name Description
Ruby Bridges: A Simple Act of Courage:

In this unit, students will learn about the Civil Rights Movement through the perspective of Ruby Bridges, a young girl caught in the struggle for equality during this time. Vocabulary strategies, slideshows, graphic organizers, and text-based questions are all included to help students compare/contrast Ruby's world with their own.



Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this topic.

Teaching Idea

Title Description
Wildlife Reserve-SeaWorld Classroom Activity: In this activity, the students will design a protected environment for an endangered animal that encourages the animal's natural behaviors and meets its physical requirements. Students will explain to their classmates why the protected environment is essential for the endangered animal.