- The Seven Circles Water Fountain: Students will apply concepts related to circles, angles, area, and circumference to a design situation.
- Building Graduation Caps: Students will apply skills from the Geometry Domain to build graduation caps for themselves using heavyweight poster paper. They will also apply some basic mathematical skills to determine dimensions and to determine minimum cost. Some of the Geometric skills reinforced in Building Graduation Caps: Cooperative Assignment are finding area, applying the concept of similarity, and the application of the properties of parallelograms. Other skills also involved in this application are measuring, and statistical calculations, such as finding the mean and the range. In addition to the hands-on group project that takes place during the lesson, there is the Prerequisite Skills Assessment: Area that should be administered before the group activity and a home-learning activity. Building Graduation Caps: Individual Assignment is the home-learning assignment; it is designed to reinforce the skills learned in the group activity.
- NASA Space Shuttle Mission Patches: Students apply geometric measures and methods, art knowledge, contextual information, and utilize clear and coherent writing to analyze NASA space shuttle mission patches from both a mathematical design and visual arts perspective.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.
- Cape Florida Lighthouse: Lore and Calculations: The historic Cape Florida Lighthouse, often described as a conical tower, teems with mathematical applications. This lesson focuses on the change in volume and lateral surface area throughout its storied existence.
- Interchangeable Wristwatch Band: Students use measures and properties of rectangular prisms and cylinders to model and rank 3D printable designs of interchangeable wristwatch bands that satisfy physical constraints.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.
- It’s Not Waste—It’s Matter!: It's Not Waste—It's Matter is an MEA that gives students an opportunity to review matter, their physical properties, and mixtures. The MEA provides students to work in teams to resolve a real-life scenario creating a design method by which recyclable products are separated in order to further process.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.
- Propensity for Density: Students apply concepts of density to situations that involve area (2-D) and volume (3-D).
- Solving Quadratic Equations: Cutting Corners: This lesson unit is intended to help you assess how well students are able to solve quadratics in one variable. In particular, the lesson will help you identify and help students who have the following difficulties; making sense of a real life situation and deciding on the math to apply to the problem, solving quadratic equations by taking square roots, completing the square, using the quadratic formula, and factoring, and interpreting results in the context of a real life situation.
- Building Blocks of Geometry: Students will be introduced to the undefinable concepts of points, lines, and planes that are the building blocks of geometry and recognize that these three terms become the basis for many other geometric definitions. Students will participate in a Building Block Scavenger Hunt, using cameras to photograph examples of specified terms that they find outside of the math classroom. The students will compose a power point to display their photographs of the required terms.
This lesson is adapted from a presentation that included an activity by Dianne Olix, 1995. - Olympic Snowboard Design: This MEA requires students to design a custom snowboard for five Olympic athletes, taking into consideration how their height and weight affect the design elements of a snowboard. There are several factors that go into the design of a snowboard, and the students must use reasoning skills to determine which factors are more important and why, as well as what factors to eliminate or add based on the athlete's style and preferences. After the students have designed a board for each athlete, they will report their procedure and reasons for their decisions.
- Modeling: Rolling Cups: This lesson unit is intended to help you assess how well students are able to choose appropriate mathematics to solve a non-routine problem, generate useful data by systematically controlling variables and develop experimental and analytical models of a physical situation.
- The Grass is Always Greener: The lesson introduces area of sectors of circles then uses the areas of circles and sectors to approximate area of 2-D figures. The lesson culminates in using the area of circles and sectors of circles as spray patterns in the design of a sprinkler system between a house and the perimeter of the yard (2-D figure).
- Poly Wants a Bridge!: "Poly Wants a Bridge" is a model-eliciting activity that allows students to assist the city of Polygon City with selecting the most appropriate bridge to build. Teams of students are required to analyze properties of bridges, such as physical composition and span length in order to solve the problem.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.
- A Pi-ece of Florida History: A Pi-ece of Florida History discovers significant dates in Florida History in the first 8 digits after the decimal of the number Pi. Historical people associated with those dates are identified and described. Students then use body measurements to approximate volume.
- Quadrilaterals using Unit Origami - Sonobe Cube: This lesson can be used as an introduction - unit attention grabber- or as a final review on quadrilaterals. As the class forms a Sonobe cube, the different quadrilaterals are formed with each new fold. Included is a Power Point introduction with instructions, a video I made demonstrating how to fold the unit origami design, a video of my lesson I use as a middle or high school introduction to quadrilaterals and 2 worksheets which accompany the lesson. I enjoy doing this activity each year and am amazed at all the prior knowledge the students have retained as the lesson proceeds.
- Turning Tires Model Eliciting Activity: The Turning Tires MEA provides students with an engineering problem in which they must work as a team to design a procedure to select the best tire material for certain situations. The main focus of the MEA is applying surface area concepts and algebra through modeling.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.
- A Pi-ece of Florida History: A Pi-ece of Florida History discovers significant dates in Florida History in the first 8 digits after the decimal of the number Pi. Historical people associated with those dates are identified and described. Students then use body measurements to approximate volume.
- Concurrent Points Are Optimal: Students will begin with a review of methods of construction of perpendicular bisectors and angle bisectors for the sides of triangles. Included in the review will be a careful discussion of the proofs that the constructions actually produce the lines that were intended.
Next, students will investigate why the perpendicular bisectors and angle bisector are concurrent, that is, all three meet at a single meet.
A more modern point of currency is the Fermat-Torricelli point (F-T). The students will construct (F-T) in GeoGebra and investigate limitations of its existence for various types of triangles.
Then a set of scenarios will be provided, including some one-dimensional and two-dimensional situations. Students will use GeoGebra to develop conjectures regarding whether a point of concurrency provides the solution for the indicated situation, and which one.
A physical model for the F-T will be indicated. The teacher may demonstrate this model but that requires three strings, three weights, and a base that has holes. A recommended base is a piece of pegboard (perhaps 2 feet by 3 feet), the weights could be fishing weights of about 3 oz., the string could be fishing line; placing flexible pieces of drinking straws in the holes will improve the performance.
The combination of geometry theorems, dynamic geometry software, a variety of contexts, and a physical analog can provide a rich experience for students.
- Quadrilaterals using Unit Origami - Sonobe Cube: This lesson can be used as an introduction - unit attention grabber- or as a final review on quadrilaterals. As the class forms a Sonobe cube, the different quadrilaterals are formed with each new fold. Included is a Power Point introduction with instructions, a video I made demonstrating how to fold the unit origami design, a video of my introduction lesson to quadrilaterals and 2 worksheets which accompany the lesson. I enjoy doing this activity each year and am amazed at all the prior knowledge the students have retained as the lesson proceeds.