Bioscience 1 Honors (#2000500) 


This document was generated on CPALMS - www.cpalms.org
You are not viewing the current course, please click the current year’s tab.

Course Standards

Name Description
SC.912.L.14.1: Describe the scientific theory of cells (cell theory) and relate the history of its discovery to the process of science.
SC.912.L.14.2: Relate structure to function for the components of plant and animal cells. Explain the role of cell membranes as a highly selective barrier (passive and active transport).
SC.912.L.14.3: Compare and contrast the general structures of plant and animal cells. Compare and contrast the general structures of prokaryotic and eukaryotic cells.
SC.912.L.14.6: Explain the significance of genetic factors, environmental factors, and pathogenic agents to health from the perspectives of both individual and public health.
SC.912.L.15.15: Describe how mutation and genetic recombination increase genetic variation.
SC.912.L.16.2: Discuss observed inheritance patterns caused by various modes of inheritance, including dominant, recessive, codominant, sex-linked, polygenic, and multiple alleles.
SC.912.L.16.3: Describe the basic process of DNA replication and how it relates to the transmission and conservation of the genetic information.
SC.912.L.16.4: Explain how mutations in the DNA sequence may or may not result in phenotypic change. Explain how mutations in gametes may result in phenotypic changes in offspring.
SC.912.L.16.5: Explain the basic processes of transcription and translation, and how they result in the expression of genes.
SC.912.L.16.6: Discuss the mechanisms for regulation of gene expression in prokaryotes and eukaryotes at transcription and translation level.
SC.912.L.16.7: Describe how viruses and bacteria transfer genetic material between cells and the role of this process in biotechnology.
SC.912.L.16.8: Explain the relationship between mutation, cell cycle, and uncontrolled cell growth potentially resulting in cancer.
SC.912.L.16.9: Explain how and why the genetic code is universal and is common to almost all organisms.
SC.912.L.16.10: Evaluate the impact of biotechnology on the individual, society and the environment, including medical and ethical issues.
SC.912.L.16.12: Describe how basic DNA technology (restriction digestion by endonucleases, gel electrophoresis, polymerase chain reaction, ligation, and transformation) is used to construct recombinant DNA molecules (DNA cloning).
SC.912.L.18.1: Describe the basic molecular structures and primary functions of the four major categories of biological macromolecules.
SC.912.L.18.2: Describe the important structural characteristics of monosaccharides, disaccharides, and polysaccharides and explain the functions of carbohydrates in living things.
SC.912.L.18.3: Describe the structures of fatty acids, triglycerides, phospholipids, and steroids. Explain the functions of lipids in living organisms. Identify some reactions that fatty acids undergo. Relate the structure and function of cell membranes.
SC.912.N.1.1: Define a problem based on a specific  body of knowledge, for example: biology, chemistry, physics, and earth/space science, and do the following: 
  1. Pose questions about the natural world, (Articulate the purpose of the investigation and identify the relevant scientific concepts).
  2. Conduct systematic observations, (Write procedures that are clear and replicable. Identify observables and examine relationships between test (independent) variable and outcome (dependent) variable. Employ appropriate methods for accurate and consistent observations; conduct and record measurements at appropriate levels of precision. Follow safety guidelines).
  3. Examine books and other sources of information to see what is already known,
  4. Review what is known in light of empirical evidence, (Examine whether available empirical evidence can be interpreted in terms of existing knowledge and models, and if not, modify or develop new models).
  5. Plan investigations, (Design and evaluate a scientific investigation).
  6. Use tools to gather, analyze, and interpret data (this includes the use of measurement in metric and other systems, and also the generation and interpretation of graphical representations of data, including data tables and graphs), (Collect data or evidence in an organized way. Properly use instruments, equipment, and materials (e.g., scales, probeware, meter sticks, microscopes, computers) including set-up, calibration, technique, maintenance, and storage).
  7. Pose answers, explanations, or descriptions of events,
  8. Generate explanations that explicate or describe natural phenomena (inferences),
  9. Use appropriate evidence and reasoning to justify these explanations to others,
  10. Communicate results of scientific investigations, and
  11. Evaluate the merits of the explanations produced by others.
SC.912.N.1.2: Describe and explain what characterizes science and its methods.
SC.912.N.1.3: Recognize that the strength or usefulness of a scientific claim is evaluated through scientific argumentation, which depends on  critical and logical thinking, and the active consideration of alternative scientific explanations to explain the data presented.
SC.912.N.1.4: Identify sources of information and assess their reliability according to the strict standards of scientific investigation.
SC.912.N.1.5: Describe and provide examples of how similar investigations conducted in many parts of the world result in the same outcome.
SC.912.N.1.6: Describe how scientific inferences are drawn from scientific observations and provide examples from the content being studied.
SC.912.N.1.7: Recognize the role of creativity in constructing scientific questions, methods and explanations.
SC.912.N.2.1: Identify what is science, what clearly is not science, and what superficially resembles science (but fails to meet the criteria for science).
SC.912.N.2.2: Identify which questions can be answered through science and which questions are outside the boundaries of scientific investigation, such as questions addressed by other ways of knowing, such as art, philosophy, and religion.
SC.912.N.2.3: Identify examples of pseudoscience (such as astrology, phrenology) in society.
SC.912.N.2.4: Explain that scientific knowledge is both durable and robust and open to change. Scientific knowledge can change because it is often examined and re-examined by new investigations and scientific argumentation. Because of these frequent examinations, scientific knowledge becomes stronger, leading to its durability.
SC.912.N.2.5: Describe instances in which scientists' varied backgrounds, talents, interests, and goals influence the inferences and thus the explanations that they make about observations of natural phenomena and describe that competing interpretations (explanations) of scientists are a strength of science as they are a source of new, testable ideas that have the potential to add new evidence to support one or another of the explanations.
SC.912.N.3.1: Explain that a scientific theory is the culmination of many scientific investigations drawing together all the current evidence concerning a substantial range of phenomena; thus, a scientific theory represents the most powerful explanation scientists have to offer.
SC.912.N.3.2: Describe the role consensus plays in the historical development of a theory in any one of the disciplines of science.
SC.912.N.3.3: Explain that scientific laws are descriptions of specific relationships under given conditions in nature, but do not offer explanations for those relationships.
SC.912.N.3.4: Recognize that theories do not become laws, nor do laws become theories; theories are well supported explanations and laws are well supported descriptions.
SC.912.N.3.5: Describe the function of models in science, and identify the wide range of models used in science.
SC.912.N.4.1: Explain how scientific knowledge and reasoning provide an empirically-based perspective to inform society's decision making.
SC.912.N.4.2: Weigh the merits of alternative strategies for solving a specific societal problem by comparing a number of different costs and benefits, such as human, economic, and environmental.
SC.912.P.8.11: Relate acidity and basicity to hydronium and hydroxyl ion concentration and pH.
SC.912.P.8.12: Describe the properties of the carbon atom that make the diversity of carbon compounds possible.
SC.912.P.8.13: Identify selected functional groups and relate how they contribute to properties of carbon compounds.
LAFS.910.RST.1.1: Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions.
LAFS.910.RST.1.2: Determine the central ideas or conclusions of a text; trace the text’s explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
LAFS.910.RST.1.3: Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text.
LAFS.910.RST.2.4: Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9–10 texts and topics.
LAFS.910.RST.2.5: Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
LAFS.910.RST.2.6: Analyze the author’s purpose in providing an explanation, describing a procedure, or discussing an experiment in a text, defining the question the author seeks to address.
LAFS.910.RST.3.7: Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words.
LAFS.910.RST.3.8: Assess the extent to which the reasoning and evidence in a text support the author’s claim or a recommendation for solving a scientific or technical problem.
LAFS.910.RST.3.9: Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.
LAFS.910.RST.4.10: By the end of grade 10, read and comprehend science/technical texts in the grades 9–10 text complexity band independently and proficiently.
LAFS.910.SL.1.1: Initiate and participate effectively in a range of collaborative discussions (one-on-one, in groups, and teacher-led) with diverse partners on grades 9–10 topics, texts, and issues, building on others’ ideas and expressing their own clearly and persuasively.
  1. Come to discussions prepared, having read and researched material under study; explicitly draw on that preparation by referring to evidence from texts and other research on the topic or issue to stimulate a thoughtful, well-reasoned exchange of ideas.
  2. Work with peers to set rules for collegial discussions and decision-making (e.g., informal consensus, taking votes on key issues, presentation of alternate views), clear goals and deadlines, and individual roles as needed.
  3. Propel conversations by posing and responding to questions that relate the current discussion to broader themes or larger ideas; actively incorporate others into the discussion; and clarify, verify, or challenge ideas and conclusions.
  4. Respond thoughtfully to diverse perspectives, summarize points of agreement and disagreement, and, when warranted, qualify or justify their own views and understanding and make new connections in light of the evidence and reasoning presented.
LAFS.910.SL.1.2: Integrate multiple sources of information presented in diverse media or formats (e.g., visually, quantitatively, orally) evaluating the credibility and accuracy of each source.
LAFS.910.SL.1.3: Evaluate a speaker’s point of view, reasoning, and use of evidence and rhetoric, identifying any fallacious reasoning or exaggerated or distorted evidence.
LAFS.910.SL.2.4: Present information, findings, and supporting evidence clearly, concisely, and logically such that listeners can follow the line of reasoning and the organization, development, substance, and style are appropriate to purpose, audience, and task.
LAFS.910.SL.2.5: Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest.
LAFS.910.WHST.1.1: Write arguments focused on discipline-specific content.
  1. Introduce precise claim(s), distinguish the claim(s) from alternate or opposing claims, and create an organization that establishes clear relationships among the claim(s), counterclaims, reasons, and evidence.
  2. Develop claim(s) and counterclaims fairly, supplying data and evidence for each while pointing out the strengths and limitations of both claim(s) and counterclaims in a discipline-appropriate form and in a manner that anticipates the audience’s knowledge level and concerns.
  3. Use words, phrases, and clauses to link the major sections of the text, create cohesion, and clarify the relationships between claim(s) and reasons, between reasons and evidence, and between claim(s) and counterclaims.
  4. Establish and maintain a formal style and objective tone while attending to the norms and conventions of the discipline in which they are writing.
  5. Provide a concluding statement or section that follows from or supports the argument presented.
LAFS.910.WHST.1.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
  1. Introduce a topic and organize ideas, concepts, and information to make important connections and distinctions; include formatting (e.g., headings), graphics (e.g., figures, tables), and multimedia when useful to aiding comprehension.
  2. Develop the topic with well-chosen, relevant, and sufficient facts, extended definitions, concrete details, quotations, or other information and examples appropriate to the audience’s knowledge of the topic.
  3. Use varied transitions and sentence structures to link the major sections of the text, create cohesion, and clarify the relationships among ideas and concepts.
  4. Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
  5. Establish and maintain a formal style and objective tone while attending to the norms and conventions of the discipline in which they are writing.
  6. Provide a concluding statement or section that follows from and supports the information or explanation presented (e.g., articulating implications or the significance of the topic).
LAFS.910.WHST.2.4: Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
LAFS.910.WHST.2.5: Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience.
LAFS.910.WHST.2.6: Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology’s capacity to link to other information and to display information flexibly and dynamically.
LAFS.910.WHST.3.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.
LAFS.910.WHST.3.8: Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the usefulness of each source in answering the research question; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and following a standard format for citation.
LAFS.910.WHST.3.9: Draw evidence from informational texts to support analysis, reflection, and research.
LAFS.910.WHST.4.10: Write routinely over extended time frames (time for reflection and revision) and shorter time frames (a single sitting or a day or two) for a range of discipline-specific tasks, purposes, and audiences.
MAFS.912.A-CED.1.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm’s law V = IR to highlight resistance R.
MAFS.912.F-IF.2.4: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.
MAFS.912.F-IF.3.7: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

  1. Graph linear and quadratic functions and show intercepts, maxima, and minima.
  2. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.
  3. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior. 
  4. Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior. 
  5. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude, and using phase shift.
MAFS.912.F-LE.1.1: Distinguish between situations that can be modeled with linear functions and with exponential functions.
  1. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.
  2. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
  3. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.
MAFS.912.N-Q.1.1: Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.
MAFS.912.N-Q.1.2: Define appropriate quantities for the purpose of descriptive modeling.
Clarifications:

Algebra 1 Content Notes:

Working with quantities and the relationships between them provides grounding for work with expressions, equations, and functions.

MAFS.912.N-Q.1.3: Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.
MAFS.912.S-ID.1.1: Represent data with plots on the real number line (dot plots, histograms, and box plots).
Clarifications:
In grades 6 – 8, students describe center and spread in a data distribution. Here they choose a summary statistic appropriate to the characteristics of the data distribution, such as the shape of the distribution or the existence of extreme data points.
MAFS.912.S-ID.1.3: Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).
Clarifications:
In grades 6 – 8, students describe center and spread in a data distribution. Here they choose a summary statistic appropriate to the characteristics of the data distribution, such as the shape of the distribution or the existence of extreme data points.
MAFS.912.S-ID.2.6: Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.
  1. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, and exponential models.
  2. Informally assess the fit of a function by plotting and analyzing residuals.
  3. Fit a linear function for a scatter plot that suggests a linear association.

Clarifications:
Students take a more sophisticated look at using a linear function to model the relationship between two numerical variables. In addition to fitting a line to data, students assess how well the model fits by analyzing residuals.

MAFS.K12.MP.1.1:

Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, “Does this make sense?” They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

Standard Relation to Course: Supporting

MAFS.K12.MP.2.1:

Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize—to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents—and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

Standard Relation to Course: Supporting

MAFS.K12.MP.3.1:

Construct viable arguments and critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and—if there is a flaw in an argument—explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

Standard Relation to Course: Supporting

MAFS.K12.MP.4.1:

Model with mathematics.

Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

Standard Relation to Course: Supporting

MAFS.K12.MP.5.1: Use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

Standard Relation to Course: Supporting

MAFS.K12.MP.6.1:

Attend to precision.

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

Standard Relation to Course: Supporting

MAFS.K12.MP.7.1:

Look for and make use of structure.

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7 × 8 equals the well remembered 7 × 5 + 7 × 3, in preparation for learning about the distributive property. In the expression x² + 9x + 14, older students can see the 14 as 2 × 7 and the 9 as 2 + 7. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see 5 – 3(x – y)² as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

Standard Relation to Course: Supporting

MAFS.K12.MP.8.1:

Look for and express regularity in repeated reasoning.

Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through (1, 2) with slope 3, middle school students might abstract the equation (y – 2)/(x – 1) = 3. Noticing the regularity in the way terms cancel when expanding (x – 1)(x + 1), (x – 1)(x² + x + 1), and (x – 1)(x³ + x² + x + 1) might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.

Standard Relation to Course: Supporting

HE.912.C.1.4: Propose strategies to reduce or prevent injuries and health problems.
Clarifications:
Mandatory passenger-restraint/helmet laws, refusal skills, mandatory immunizations, healthy relationship skills, and improved inspection of food sources.
HE.912.C.1.5: Analyze strategies for prevention, detection, and treatment of communicable and chronic diseases.
Clarifications:
Health prevention, detection, and treatment of: breast and testicular cancer, suicide, obesity, and industrial-related chronic disease.
HE.912.C.1.8: Assess the degree of susceptibility to injury, illness, or death if engaging in unhealthy/risky behaviors.
Clarifications:
Risks associated with alcohol abuse, including poison, date rape, and death; cancer and chronic lung disease related to tobacco use; overdose from drug use; child abuse or neglect; and dating violence.
SS.912.C.2.4: Evaluate, take, and defend positions on issues that cause the government to balance the interests of individuals with the public good.
SS.912.C.2.8: Analyze the impact of citizen participation as a means of achieving political and social change.
Clarifications:
Examples are e-mail campaigns, boycotts, blogs, podcasts, protests, demonstrations, letters to editors.
SS.912.C.2.13: Analyze various forms of political communication and evaluate for bias, factual accuracy, omission, and emotional appeal.
Clarifications:
Examples are political cartoons, propaganda, campaign advertisements, political speeches, electronic bumper stickers, blogs, media.
ELD.K12.ELL.SC.1: English language learners communicate information, ideas and concepts necessary for academic success in the content area of Science.
ELD.K12.ELL.SI.1: English language learners communicate for social and instructional purposes within the school setting.



General Course Information and Notes

GENERAL NOTES

Laboratory investigations that include the use of scientific inquiry, research, measurement, problem solving, laboratory apparatus and technologies, experimental procedures, and safety procedures are an integral part of this course. The National Science Teachers Association (NSTA) recommends that at the high school level, all students should be in the science lab or field, collecting data every week. School laboratory investigations (labs) are defined by the National Research Council (NRC) as an experience in the laboratory, classroom, or the field that provides students with opportunities to interact directly with natural phenomena or with data collected by others using tools, materials, data collection techniques, and models (NRC, 2006, p. 3). Laboratory investigations in the high school classroom should help all students develop a growing understanding of the complexity and ambiguity of empirical work, as well as the skills to calibrate and troubleshoot equipment used to make observations. Learners should understand measurement error; and have the skills to aggregate, interpret, and present the resulting data (National Research Council, 2006, p.77; NSTA, 2007). Bioscience I is a laboratory based course that focuses on introducing students to the basic lab techniques, equipment, critical thinking, work ethics, and communication skills currently used in the medical, agricultural, marine and industrial bioscience fields. Students will gain an understanding of basic DNA and molecular biology, epigenetics, genetically modified foods, bacterial plasmids, and forensics. Students will learn the principles, methodologies, and applications of equipment such as thermocyclers, horizontal gel electrophoresis apparatus, micropipettes, spectrophotometers, centrifuges, etc. Students will gain proficiency in calculating, preparing, and pH control of common lab reagents, solutions, buffers, and agarose gels. Students will learn the principles of qualitative and quantitative analysis using biomolecular indicators, spectrophotometry, and standard curves. Topics covered will include the genetics of cancer, epigenetics, emerging and re-emerging infectious diseases that affect plants and animals, ethics of bioscience, and careers in bioscience.

Laboratory activities should include but not be limited to:

  • Sterilization, handling and safety requirements according to standard operating procedures;
  • The preparation of buffer solutions and agarose gels for horizontal electrophoresis;
  • The preparation of solutions for spectroscopy;
  • Use a spectrophotometer to measure solution concentrations and graph standard curves;
  • Bacterial transformation and ligation using the Green fluorescent protein gene;
  • Extraction of DNA;
  • Quantitative analysis of DNA molecular weights;
  • Polymerase chain reactions using given primers;
  • Simulate DNA fingerprinting techniques used in crime scene analysis using given gene sequences.

Honors and Advanced Level Course Note: Advanced courses require a greater demand on students through increased academic rigor.  Academic rigor is obtained through the application, analysis, evaluation, and creation of complex ideas that are often abstract and multi-faceted.  Students are challenged to think and collaborate critically on the content they are learning. Honors level rigor will be achieved by increasing text complexity through text selection, focus on high-level qualitative measures, and complexity of task. Instruction will be structured to give students a deeper understanding of conceptual themes and organization within and across disciplines. Academic rigor is more than simply assigning to students a greater quantity of work.

Special Notes:

Instructional Practices

Teaching from a range of complex text is optimized when teachers in all subject areas implement the following strategies on a routine basis:

  1. Ensuring wide reading from complex text that varies in length.
  2. Making close reading and rereading of texts central to lessons.
  3. Emphasizing text-specific complex questions, and cognitively complex tasks, reinforce focus on the text and cultivate independence.
  4. Emphasizing students supporting answers based upon evidence from the text
  5. Providing extensive research and writing opportunities (claims and evidence).

Prerequisite: Honors Biology
Corequisite: Honors Chemistry


Science and Engineering Practices
 (NRC Framework for K-12 Science Education, 2010)

  • Asking questions (for science) and defining problems (for engineering).
  • Developing and using models.
  • Planning and carrying out investigations.
  • Analyzing and interpreting data.
  • Using mathematics, information and computer technology, and computational thinking.
  • Constructing explanations (for science) and designing solutions (for engineering).
  • Engaging in argument from evidence.
  • Obtaining, evaluating, and communicating information.

Literacy Standards in Science
Secondary science courses include reading standards for literacy in science and technical subjects 6-12 and writing standards for literacy in history/social studies, science, and technical subjects 6-12. The courses also include speaking and listening standards. For a complete list of standards required for this course click on the blue tile labeled course standards. You may also download the complete course including all required standards and notes sections using the export function located at the top of this page.

English Language Development ELD Standards Special Notes Section:
Teachers are required to provide listening, speaking, reading and writing instruction that allows English language learners (ELL) to communicate information, ideas and concepts for academic success in the content area of Science. For the given level of English language proficiency and with visual, graphic, or interactive support, students will interact with grade level words, expressions, sentences and discourse to process or produce language necessary for academic success The ELD standard should specify a relevant content area concept or topic of study chosen by curriculum developers and teachers which maximizes an ELL's need for communication and social skills. To access an ELL supporting document which delineates performance definitions and descriptors, please click on the following link: https://cpalmsmediaprod.blob.core.windows.net/uploads/docs/standards/eld/sc.pdf


General Information

Course Number: 2000500 Course Path: Section: Grades PreK to 12 Education Courses > Grade Group: Grades 9 to 12 and Adult Education Courses > Subject: Science > SubSubject: Biological Sciences >
Abbreviated Title: BIOSCIENCE 1 HON
Number of Credits: One (1) credit
Course Attributes:
  • Honors
  • Class Size Core Required
  • Highly Qualified Teacher (HQT) Required
  • Florida Standards Course
Course Type: Core Academic Course Course Level: 3
Course Status: Course Approved
Grade Level(s): 9,10,11,12
Graduation Requirement: Equally Rigorous Science



Educator Certifications

Biology (Grades 6-12)
Chemistry (Grades 6-12)


There are more than 1244 related instructional/educational resources available for this on CPALMS. Click on the following link to access them: https://www.cpalms.org/PreviewCourse/Preview/13140