CPALMS Logo Generated on 9/13/2025 at 8:27 AM
The webpage this document was printed/exported from can be found at the following URL:
https://www.cpalms.org/PreviewAccessPoint/Preview/15749
Given two figures, determine whether they are similar and explain their similarity based on the equality of corresponding angles and the proportionality of corresponding sides.
Clarifications:

Essential Understandings

Concrete:

  • Select two objects that are the same shape.
  • Select two objects that have different shapes.
  • Use appropriate tools as needed to duplicate a shape (e.g., wiki sticks, computers, interactive white boards, markers).
  • Given two shapes, label (identify, point to, mark,) the parts of the figures that are congruent.
Representation:
  • Describe the characteristics of two figures that are the same.
  • Describe the characteristics of two figures that are different.
  • Understand the following concepts and vocabulary: similar, congruent, angles, corresponding and transformation.

Access Point #: MAFS.912.G-SRT.1.AP.2b (Archived Access Point)
Access Point Standards

Visit the specific benchmark webpage to find related instructional resources.

  • MAFS.912.G-SRT.1.2: Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
Access Point Information
Number:
MAFS.912.G-SRT.1.AP.2b
Category:
Access Points
Date Adopted or Revised:
06/14
Cluster:
Understand similarity in terms of similarity transformations. (Geometry - Major Cluster)

Clusters should not be sorted from Major to Supporting and then taught in that order. To do so would strip the coherence of the mathematical ideas and miss the opportunity to enhance the major work of the grade with the supporting clusters.

Access Point Courses
  • Foundational Skills in Mathematics 9-12 (#1200400): This course supports students who need additional instruction in foundational mathematics skills as it relates to core instruction. Instruction will use explicit, systematic, and sequential approaches to mathematics instruction addressing all strands including number sense & operations, algebraic reasoning, functions, geometric reasoning and data analysis & probability. Teachers will use the listed benchmarks that correspond to each students’ needs. 

    Effective instruction matches instruction to the need of the students in the group and provides multiple opportunities to practice the skill and receive feedback. The additional time allotted for this course is in addition to core instruction. The intervention includes materials and strategies designed to supplement core instruction.

  • Informal Geometry (#1206300): The fundamental purpose of the course in Informal Geometry is to extend students' geometric experiences from the middle grades. Students explore more complex geometric situations and deepen their explanations of geometric relationships. Important differences exist between this Geometry course and the historical approach taken in Geometry classes. For example, transformations are emphasized early in this course. Close attention should be paid to the introductory content for the Geometry conceptual category found in the high school standards. The Standards for Mathematical Practice apply throughout each course and, together with the content standards, prescribe that students experience mathematics as a coherent, useful, and logical subject that makes use of their ability to make sense of problem situations. The critical areas, organized into five units are as follows.

    Unit 1- Congruence, Proof, and Constructions: In previous grades, students were asked to draw triangles based on given measurements. They also have prior experience with rigid motions: translations, reflections, and rotations and have used these to develop notions about what it means for two objects to be congruent. In this unit, students establish triangle congruence criteria, based on analyses of rigid motions and formal constructions. Students informally prove theorems, using a variety of formats, and solve problems about triangles, quadrilaterals, and other polygons. They apply reasoning to complete geometric constructions and explain why they work.

    Unit 2- Similarity, Proof, and Trigonometry: Students apply their earlier experience with dilations and proportional reasoning to build a formal understanding of similarity. They identify criteria for similarity of triangles, use similarity to solve problems, and apply similarity in right triangles, with particular attention to special right triangles and the Pythagorean theorem.

    Unit 3- Extending to Three Dimensions: Students' experience with two-dimensional and three-dimensional objects is extended to include informal explanations of circumference, area and volume formulas.

    Unit 4- Connecting Algebra and Geometry Through Coordinates: Building on their work with the Pythagorean theorem in 8th grade to find distances, students use a rectangular coordinate system to verify geometric relationships, including properties of special triangles and quadrilaterals and slopes of parallel and perpendicular lines, which relates back to work done in the first course.

    Unit 5- Circles With and Without Coordinates: In this unit students study the Cartesian coordinate system and use the distance formula to write the equation of a circle when given the radius and the coordinates of its center. Given an equation of a circle, they draw the graph in the coordinate plane, and apply techniques for solving quadratic equations, which relates back to work done in the first course, to determine intersections between lines and circles or parabolas.
  • Geometry (#1206310): In Geometry, instructional time will emphasize five areas: (1) proving and applying relationships and theorems involving two-dimensional figures using Euclidean geometry and coordinate geometry; (2) establishing congruence and similarity using criteria from Euclidean geometry and using rigid transformations; (3) extending knowledge of geometric measurement to two-dimensional figures and three-dimensional figures; (4) creating and applying equations of circles in the coordinate plane and (5)developing an understanding of right triangle trigonometry.

    All clarifications stated, whether general or specific to Geometry, are expectations for instruction of that benchmark.

    Curricular content for all subjects must integrate critical-thinking, problem-solving, and workforce-literacy skills; communication, reading, and writing skills; mathematics skills; collaboration skills; contextual and applied-learning skills; technology-literacy skills; information and media-literacy skills; and civic-engagement skills.

  • Geometry Honors (#1206320): In Geometry Honors, instructional time will emphasize five areas: (1) proving and applying relationships and theorems involving two-dimensional figures using Euclidean geometry and coordinate geometry; (2) establishing congruence and similarity using criteria from Euclidean geometry and using rigid transformations; (3) extending knowledge of geometric measurement to two-dimensional figures and three-dimensional figures; (4) creating and applying equations of circles in the coordinate plane and (5) developing an understanding of right triangle trigonometry.

    All clarifications stated, whether general or specific to Geometry Honors, are expectations for instruction of that benchmark.

    Curricular content for all subjects must integrate critical-thinking, problem-solving, and workforce-literacy skills; communication, reading, and writing skills; mathematics skills; collaboration skills; contextual and applied-learning skills; technology-literacy skills; information and media-literacy skills; and civic-engagement skills.

  • Access Informal Geometry (#7912060):
  • Access Mathematics for Liberal Arts (#7912070): Access Courses:

    Access courses are for students with the most significant cognitive disabilities. Access courses are designed to provide students access to grade-level general curriculum. Access points are alternate academic achievement standards included in access courses that target the salient content of Florida’s standards. Access points are intentionally designed to academically challenge students with the most significant cognitive disabilities. 

  • Geometry for Credit Recovery (#1206315): In Geometry for Credit Recovery, instructional time will emphasize six areas: (1) proving and applying relationships and theorems involving two-dimensional figures using Euclidean geometry and coordinate geometry; (2) establishing congruence and similarity using criteria from Euclidean geometry and using rigid transformations; (3) extending knowledge of geometric measurement to two-dimensional figures and three-dimensional figures; (4) creating and applying equations of circles in the coordinate plane and (5) developing an understanding of right triangle trigonometry.

    All clarifications stated, whether general or specific to Geometry, are expectations for instruction of that benchmark.

    Curricular content for all subjects must integrate critical-thinking, problem-solving, and workforce-literacy skills; communication, reading, and writing skills; mathematics skills; collaboration skills; contextual and applied-learning skills; technology-literacy skills; information and media-literacy skills; and civic-engagement skills.

    Credit Recovery courses are credit bearing courses with specific content requirements defined by state academic standards (SAS). Students enrolled in a Credit Recovery course must have previously attempted the corresponding course (and/or End-of-Course assessment) since the course requirements for the Credit Recovery course are exactly the same as the previously attempted corresponding course. For example, Geometry (1206310) and Geometry for Credit Recovery (1206315) have identical content requirements. It is important to note that Credit Recovery courses are not bound by Section 1003.436(1)(a), Florida Statutes, requiring a minimum of 135 hours of bona fide instruction (120 hours in a school/district implementing block scheduling) in a designed course of study that contains student performance standards, since the students have previously attempted successful completion of the corresponding course. Additionally, Credit Recovery courses should ONLY be used for credit recovery, grade forgiveness, or remediation for students needing to prepare for an End-of-Course assessment retake.

  • Liberal Arts Mathematics 1 (#1207300):
  • Access Geometry (#7912065): Access Courses:

    Access courses are for students with the most significant cognitive disabilities. Access courses are designed to provide students access to grade-level general curriculum. Access points are alternate academic achievement standards included in access courses that target the salient content of Florida’s standards. Access points are intentionally designed to academically challenge students with the most significant cognitive disabilities.