



This is a resource from CPALMS (www.cpalms.org) where all educators go for bright ideas!

Resource ID#: 131252

Primary Type: Tutorial

**Direct Link:** <a href="https://www.khanacademy.org/math/cc-eighth-grade-math/cc-8th-numbers-operations/cc-8th-irrational-numbers/v/introduction-to-rational-numbers">https://www.khanacademy.org/math/cc-eighth-grade-math/cc-8th-numbers-operations/cc-8th-irrational-numbers/v/introduction-to-rational-numbers</a>

## An introduction to rational and irrational numbers

Students will learn the difference between rational and irrational numbers.

## **General Information**

Subject(s): Mathematics
Grade Level(s): 8

Intended Audience: Students

Instructional Time: 7 Minute(s)

 $\textbf{Keywords:} \ \text{rational, irrational}$ 

Instructional Component Type(s): Tutorial

Instructional Design Framework(s): <a href="Demonstration">Demonstration</a>

Resource Collection: Secondary Math specific existing tutorials

**Suggested Technology:** Computers for Students, Internet Connection, Speakers/Headphones

## Source and Access Information

Contributed by: Garo Kalpakjian
Name of Author/Source: Khan Academy
District/Organization of Contributor(s): Leon

Access Privileges: Public

License: CPALMS License - no distribution - non commercial

## **Aligned Standards**

| Name           | Description                                                                                                                                                                                                                                                                               |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MAFS.8.NS.1.1: | Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number. |