Comparative Relational Thinking in an Addition Equation

Students use comparative relational thinking to determine the value of an unknown number.

General Information

Subject(s): Mathematics
Grade Level(s): 4
Intended Audience: Educators

Keywords: MFAS, equality, evaluate, comparative relational, variable

Instructional Component Type(s): Formative Assessment

Resource Collection: MFAS Formative Assessments

Attachment

MFAS_ComparativeRelationalThinkingInAnAdditionEquationWorksheet.docx
MFAS_ComparativeRelationalThinkingInAnAdditionEquationWorksheet.pdf

Formative Assessment Task

Instructions for Implementing the Task

Note: This task should be implemented individually.

1. The teacher provides the student with the Comparative Relational Thinking in an Addition Equation worksheet and says, "Let's look at this equation. It says $68 + 3 = n + 7$.”
2. The teacher then says, “How could you compare the expressions on either side of the equal sign to determine the value of n? Find the value of n by comparing and then explain your reasoning.”
3. The student is given ample time to determine the value of n. The teacher should observe if the student must use computation to determine the value of n. If necessary, the teacher may ask, “How does seven compare to three? Can you use that information to help you determine the value of n?”

TASK RUBRIC

Getting Started

Misconception/Error

The student has an operational view of the equal sign.

Examples of Student Work at this Level

The student does not understand that the equal sign expresses a relationship between the expressions to its left and right. The student says the value of n is:
71 because 68 + 3 equals 71.
78 because 68 + 3 + 7 equals 78.

Questions Eliciting Thinking

What does the equal sign mean?

I see that you did not consider the number seven to the right of the equal sign. Should we perform any operations with the seven?

Why did you add the seven to 71? Does that tell you the value of \(n \)?

Show the student the equation \(7 = 7 \). Ask the student if the equation is true or false.

Instructional Implications

Consider using the MFAS task True or Not True (1.OA.4.7) which provides insight into the student’s understanding of the equal sign.

Provide explicit instruction on the meaning of the equal sign. Use base ten blocks to show that the quantities on the left and right sides of the equal sign must have the same value. Guide the student to determine the value of \(n \) using the blocks. Then provide the student with additional addition equations that contain a missing number. Model for the student how to determine the value of one side of the equation and then use that value to determine the unknown quantity on the other side of the equation. Eventually, model comparative relational thinking to solve equations using base ten blocks.

Making Progress

Misconception/Error

The student has a relational view of the equal sign and must determine the sum of the addends on the left side of the equal sign in order to determine the value of \(n \).

Examples of Student Work at this Level

The student adds three to 68 and says the sum is 71. The student then says that \(n \) is 64 because 64 + 7 equals 71. The student explains that the quantities on the left and right sides of the equal sign must have the same value.

Questions Eliciting Thinking

You have a good understanding of the meaning of the equal sign. Could you look at the numbers on both sides of the equation and make some comparisons?

How would you compare the seven and the three? If seven is four more than three, then how will the value of \(n \) compare to 68?

Instructional Implications

Model for the student how to use comparative relational thinking to determine the value of an unknown number in an equation that relates four whole numbers. Provide opportunities for the student to hear the explanations of Got It level students using comparative relational thinking to determine the value of unknowns in equations.

Got It

Misconception/Error

The student provides complete and correct responses to all components of the task.

Examples of Student Work at this Level

The student determines that the value of \(n \) is 64 by using comparative relational thinking. For example, the student says, “Seven is four more than three so \(n \) must be four less than 68.”

Questions Eliciting Thinking

Why is it sometimes helpful to think about equations comparatively? Can you think of an example of an equation that is easier to solve using comparative relational thinking rather than by performing operations?

Instructional Implications

Consider using the MFAS task Comparative Relational Thinking in a Multiplication Equation (4.OA.1.b).

Provide a false equation such as 75 + 4 = 82 + 11. Have the student determine the error and then use comparative relational thinking to rewrite the equation so that it is true.

Accommodations & Recommendations

Special Materials Needed:

- Comparative Relational Thinking in an Addition Equation worksheet

Source and Access Information

Contributed by: MFAS FCRSTEM

Name of Author/Source: MFAS FCRSTEM

District/ Organization of Contributor(s): Okaloosa

Access Privileges: Public

License: CPALMS License - no distribution - non commercial
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAFS.4.OA.1.b</td>
<td>Determine the unknown whole number in an equation relating four whole numbers using comparative relational thinking. For example, solve $76 + 9 = n + 5$ for n by arguing that nine is four more than five, so the unknown number must be four greater than 76.</td>
</tr>
</tbody>
</table>