Help

MAFS.912.G-SRT.1.3

Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.
Subject Area: Mathematics
Grade: 912
Domain-Subdomain: Geometry: Similarity, Right Triangles, & Trigonometry
Cluster: Level 2: Basic Application of Skills & Concepts
Cluster: Understand similarity in terms of similarity transformations. (Geometry - Major Cluster) -

Clusters should not be sorted from Major to Supporting and then taught in that order. To do so would strip the coherence of the mathematical ideas and miss the opportunity to enhance the major work of the grade with the supporting clusters.

Date Adopted or Revised: 02/14
Date of Last Rating: 02/14
Status: State Board Approved
Assessed: Yes

TEST ITEM SPECIFICATIONS

    Also assesses:

    MAFS.912.G-SRT.2.4

  • Assessment Limits :
    Items may require the student to be familiar with using the algebraic
    description begin mathsize 12px style left parenthesis x comma y right parenthesis rightwards arrow left parenthesis x plus a comma y plus b right parenthesis end style for a translation, and
    begin mathsize 12px style left parenthesis x comma y right parenthesis rightwards arrow left parenthesis k x comma k y right parenthesis end style for a dilation when given the center of dilation.
    Items may require the student to be familiar with the algebraic
    description for a 90-degree rotation about the origin,
    begin mathsize 12px style left parenthesis x comma y right parenthesis rightwards arrow left parenthesis negative y comma x right parenthesis end style, for a 180-degree rotation about the origin,
    begin mathsize 12px style left parenthesis x comma y right parenthesis rightwards arrow left parenthesis negative x comma negative y right parenthesis end style , and for a 270-degree rotation about the origin,
    begin mathsize 12px style left parenthesis x comma y right parenthesis rightwards arrow left parenthesis y comma negative x right parenthesis end style . Items that use more than one transformation may
    ask the student to write a series of algebraic descriptions.
  • Calculator :

    Neutral

  • Clarification :
    Students will explain using properties of similarity transformations
    why the AA criterion is sufficient to show that two triangles are
    similar.

    Students will use triangle similarity to prove theorems about
    triangles.

    Students will prove the Pythagorean theorem using similarity. 

  • Stimulus Attributes :
    Items may be set in a real-world or mathematical context.
  • Response Attributes :

    None